{"title":"利用聚类分析和指标相关图确定地质域:以磷钛为例","authors":"G. Moreira, J. F. Coimbra Leite Costa, D. Marques","doi":"10.1080/25726838.2020.1814483","DOIUrl":null,"url":null,"abstract":"ABSTRACT One of the first decisions to be made when building a mineral resource model is the definition of geological/geostatistical domains. Cluster analysis is a set of techniques in machine learning that can be especially suited for this matter. In order to compare different approaches, two clustering algorithms were investigated in this study: k-means and the dual-space clustering algorithm. Choosing the most appropriate method and the number of clusters can be challenging and some metrics are needed to support these decisions, including the validation of the spatial distribution of the clusters, which is not always appropriately discussed in the literature. We introduce the use of correlograms of the indicators for that matter. Although clustering techniques can be robust for an application in resource modelling, expert knowledge is still necessary when applying cluster analysis to resource modeling, since final decisions should not be based solely on statistical indexes, but also on experience. In this paper, the proposed methodology was tested in a three-dimensional dataset related to a phosphate/titanium deposit.","PeriodicalId":43298,"journal":{"name":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","volume":"129 1","pages":"176 - 190"},"PeriodicalIF":0.9000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726838.2020.1814483","citationCount":"6","resultStr":"{\"title\":\"Defining geologic domains using cluster analysis and indicator correlograms: a phosphate-titanium case study\",\"authors\":\"G. Moreira, J. F. Coimbra Leite Costa, D. Marques\",\"doi\":\"10.1080/25726838.2020.1814483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT One of the first decisions to be made when building a mineral resource model is the definition of geological/geostatistical domains. Cluster analysis is a set of techniques in machine learning that can be especially suited for this matter. In order to compare different approaches, two clustering algorithms were investigated in this study: k-means and the dual-space clustering algorithm. Choosing the most appropriate method and the number of clusters can be challenging and some metrics are needed to support these decisions, including the validation of the spatial distribution of the clusters, which is not always appropriately discussed in the literature. We introduce the use of correlograms of the indicators for that matter. Although clustering techniques can be robust for an application in resource modelling, expert knowledge is still necessary when applying cluster analysis to resource modeling, since final decisions should not be based solely on statistical indexes, but also on experience. In this paper, the proposed methodology was tested in a three-dimensional dataset related to a phosphate/titanium deposit.\",\"PeriodicalId\":43298,\"journal\":{\"name\":\"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"129 1\",\"pages\":\"176 - 190\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25726838.2020.1814483\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726838.2020.1814483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Earth Science-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726838.2020.1814483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Defining geologic domains using cluster analysis and indicator correlograms: a phosphate-titanium case study
ABSTRACT One of the first decisions to be made when building a mineral resource model is the definition of geological/geostatistical domains. Cluster analysis is a set of techniques in machine learning that can be especially suited for this matter. In order to compare different approaches, two clustering algorithms were investigated in this study: k-means and the dual-space clustering algorithm. Choosing the most appropriate method and the number of clusters can be challenging and some metrics are needed to support these decisions, including the validation of the spatial distribution of the clusters, which is not always appropriately discussed in the literature. We introduce the use of correlograms of the indicators for that matter. Although clustering techniques can be robust for an application in resource modelling, expert knowledge is still necessary when applying cluster analysis to resource modeling, since final decisions should not be based solely on statistical indexes, but also on experience. In this paper, the proposed methodology was tested in a three-dimensional dataset related to a phosphate/titanium deposit.