关于双曲正割核估计的密度估计的注释

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
H. Bakouch, Ola A. Elsamadony, C. Chesneau
{"title":"关于双曲正割核估计的密度估计的注释","authors":"H. Bakouch, Ola A. Elsamadony, C. Chesneau","doi":"10.1080/02522667.2022.2084244","DOIUrl":null,"url":null,"abstract":"Abstract Kernel density estimation is a technique for estimating the probability density function, when data are obtained from unknown data generating processes. Because the kernel estimator is a good alternative to the histogram utilized as a relative estimator for the probability density function, it can supply us with the probability of an event of interest. In this note, we contribute to this subject through an extensive study of the hyperbolic secant kernel density estimator. We derived some properties of the obtained estimator, such as bias, variance, optimal bandwidth, and mean squared error. Finally, its performance is investigated using three practical data sets, two of them have both negative and positive values. In addition, a significant smooth bandwidth was proposed during the discussion.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"43 1","pages":"2007 - 2019"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on density estimation via the hyperbolic secant kernel estimator\",\"authors\":\"H. Bakouch, Ola A. Elsamadony, C. Chesneau\",\"doi\":\"10.1080/02522667.2022.2084244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Kernel density estimation is a technique for estimating the probability density function, when data are obtained from unknown data generating processes. Because the kernel estimator is a good alternative to the histogram utilized as a relative estimator for the probability density function, it can supply us with the probability of an event of interest. In this note, we contribute to this subject through an extensive study of the hyperbolic secant kernel density estimator. We derived some properties of the obtained estimator, such as bias, variance, optimal bandwidth, and mean squared error. Finally, its performance is investigated using three practical data sets, two of them have both negative and positive values. In addition, a significant smooth bandwidth was proposed during the discussion.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"43 1\",\"pages\":\"2007 - 2019\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02522667.2022.2084244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02522667.2022.2084244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要核密度估计是一种估计未知数据生成过程中数据的概率密度函数的技术。由于核估计器是直方图的一个很好的替代方法,它可以作为概率密度函数的相对估计器,它可以为我们提供感兴趣的事件的概率。在这篇笔记中,我们通过对双曲正割核密度估计量的广泛研究来对这个主题做出贡献。我们推导了得到的估计量的一些性质,如偏差、方差、最优带宽和均方误差。最后,利用三个实际数据集对其性能进行了研究,其中两个数据集同时具有负值和正值。此外,在讨论中提出了一个重要的平滑带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on density estimation via the hyperbolic secant kernel estimator
Abstract Kernel density estimation is a technique for estimating the probability density function, when data are obtained from unknown data generating processes. Because the kernel estimator is a good alternative to the histogram utilized as a relative estimator for the probability density function, it can supply us with the probability of an event of interest. In this note, we contribute to this subject through an extensive study of the hyperbolic secant kernel density estimator. We derived some properties of the obtained estimator, such as bias, variance, optimal bandwidth, and mean squared error. Finally, its performance is investigated using three practical data sets, two of them have both negative and positive values. In addition, a significant smooth bandwidth was proposed during the discussion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信