{"title":"有限能量的离散绿势","authors":"Hisayasu Kurata, M. Yamasaki","doi":"10.14492/HOKMJ/1537948833","DOIUrl":null,"url":null,"abstract":"For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Green Potentials with Finite Energy\",\"authors\":\"Hisayasu Kurata, M. Yamasaki\",\"doi\":\"10.14492/HOKMJ/1537948833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/HOKMJ/1537948833\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/HOKMJ/1537948833","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.
期刊介绍:
The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.