有限能量的离散绿势

IF 0.6 4区 数学 Q3 MATHEMATICS
Hisayasu Kurata, M. Yamasaki
{"title":"有限能量的离散绿势","authors":"Hisayasu Kurata, M. Yamasaki","doi":"10.14492/HOKMJ/1537948833","DOIUrl":null,"url":null,"abstract":"For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Green Potentials with Finite Energy\",\"authors\":\"Hisayasu Kurata, M. Yamasaki\",\"doi\":\"10.14492/HOKMJ/1537948833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/HOKMJ/1537948833\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/HOKMJ/1537948833","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个双曲无限网络,众所周知,具有有限能量的格林势是狄利克雷势。相反,如果狄利克雷势是非正的拉普拉斯势,那么它就是一个能量有限的格林势。本文研究狄利克雷势是否可以表示为两个能量有限的格林势之差。比较函数的狄利克雷和及其拉普拉斯和在我们的研究中起着重要的作用。作为一个副产品,我们得到了一个函数的Riesz分解,它的拉普拉斯函数是一个狄利克雷函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Green Potentials with Finite Energy
For a hyperbolic infinite network, it is well-known that Green potentials with finite energy are Dirichlet potentials. Conversely, if a Dirichlet potential has non-positive Laplacian, then it is a Green potential with finite energy. In this paper, we study whether a Dirichlet potential can be expressed as a difference of two Green potentials with finite energy. Comparisons of the Dirichlet sum of a function and that of its Laplacian play important roles in our study. As a by-product, we obtain a Riesz decomposition of a function whose Laplacian is a Dirichlet function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信