氮源对小麦产量和全球净变暖潜力的影响

IF 2.3 4区 农林科学 Q1 AGRONOMY
M. Haque, S. Akhter, J. Biswas, Eyakub Ali, M. Maniruzzaman, S. Akter, Z. Solaiman
{"title":"氮源对小麦产量和全球净变暖潜力的影响","authors":"M. Haque, S. Akhter, J. Biswas, Eyakub Ali, M. Maniruzzaman, S. Akter, Z. Solaiman","doi":"10.1080/03650340.2023.2228714","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nitrous oxide (N2O) emission is mainly associated with aerobic crop culture, which is influenced by nitrogen (N) fertilizer sources, rates, placement methods, and water management systems. The influence of N fertilizers on greenhouse gas (GHG) emission patterns are not well documented in Asian region. The present investigation was undertaken to identify GHG emission patterns, net carbon budget, net global warming potential (GWP) and GHG intensity. N fertilizer from prilled urea (PU), urea super granule (USG) and N-phosphorus (P)-potassium (K) briquette (NPKB) were used and compared with control (no fertilizer). Equal nutrient doses were maintained for all the treatments irrespective of fertilizer sources. Static close chamber technique was used for measuring GHG emission. Depending on treatments, total methane (CH4), nitrous oxide and carbon dioxide (CO2) fluxes were 8.16–10.85, 0.57-0.49-0.59 and 1739–2309 kg ha−1 season−1, respectively and net GWPs varied from −1292 to −2438 kg CO2 eq. ha−1 season−1. Wheat grain yields significantly varied from 3.2 to 3.9 t ha−1 because of N sources and rates. Use of USG for wheat cultivation can increase CO2 removal about 22–88% from the atmosphere along with about 2–14% grain yield and 26–48% soil organic carbon (SOC) sequestration improvements compared to other N sources in Bangladesh.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"3314 - 3327"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nitrogen sources on grain yield of wheat and net global warming potential\",\"authors\":\"M. Haque, S. Akhter, J. Biswas, Eyakub Ali, M. Maniruzzaman, S. Akter, Z. Solaiman\",\"doi\":\"10.1080/03650340.2023.2228714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Nitrous oxide (N2O) emission is mainly associated with aerobic crop culture, which is influenced by nitrogen (N) fertilizer sources, rates, placement methods, and water management systems. The influence of N fertilizers on greenhouse gas (GHG) emission patterns are not well documented in Asian region. The present investigation was undertaken to identify GHG emission patterns, net carbon budget, net global warming potential (GWP) and GHG intensity. N fertilizer from prilled urea (PU), urea super granule (USG) and N-phosphorus (P)-potassium (K) briquette (NPKB) were used and compared with control (no fertilizer). Equal nutrient doses were maintained for all the treatments irrespective of fertilizer sources. Static close chamber technique was used for measuring GHG emission. Depending on treatments, total methane (CH4), nitrous oxide and carbon dioxide (CO2) fluxes were 8.16–10.85, 0.57-0.49-0.59 and 1739–2309 kg ha−1 season−1, respectively and net GWPs varied from −1292 to −2438 kg CO2 eq. ha−1 season−1. Wheat grain yields significantly varied from 3.2 to 3.9 t ha−1 because of N sources and rates. Use of USG for wheat cultivation can increase CO2 removal about 22–88% from the atmosphere along with about 2–14% grain yield and 26–48% soil organic carbon (SOC) sequestration improvements compared to other N sources in Bangladesh.\",\"PeriodicalId\":8154,\"journal\":{\"name\":\"Archives of Agronomy and Soil Science\",\"volume\":\"69 1\",\"pages\":\"3314 - 3327\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Agronomy and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2228714\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2228714","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

摘要一氧化二氮(N2O)的排放主要与有氧作物栽培有关,而有氧作物种植受氮(N)肥料来源、施用量、施用方法和水管理系统的影响。氮肥对温室气体排放模式的影响在亚洲地区没有很好的记录。本调查旨在确定温室气体排放模式、净碳预算、净全球变暖潜能值和温室气体强度。采用尿素颗粒(PU)、尿素超级颗粒(USG)和氮磷钾(K)成型块(NPKB)制成的氮肥,并与对照(不施肥)进行了比较。无论肥料来源如何,所有处理都保持相同的营养剂量。采用静态密闭室技术测量GHG排放。根据处理情况,甲烷(CH4)、一氧化二氮和二氧化碳(CO2)的总通量分别为8.16–10.85、0.57-0.49-0.59和1739–2309 kg ha−1季节−1,净全球升温潜能值从−1292到−2438不等 千克二氧化碳当量公顷−1季−1。由于氮的来源和比率,小麦产量在3.2至3.9 t ha−1之间存在显著差异。与孟加拉国的其他氮源相比,将USG用于小麦种植可以提高大气中二氧化碳的去除率约22-88%,粮食产量约2-14%,土壤有机碳(SOC)固存率提高26-48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of nitrogen sources on grain yield of wheat and net global warming potential
ABSTRACT Nitrous oxide (N2O) emission is mainly associated with aerobic crop culture, which is influenced by nitrogen (N) fertilizer sources, rates, placement methods, and water management systems. The influence of N fertilizers on greenhouse gas (GHG) emission patterns are not well documented in Asian region. The present investigation was undertaken to identify GHG emission patterns, net carbon budget, net global warming potential (GWP) and GHG intensity. N fertilizer from prilled urea (PU), urea super granule (USG) and N-phosphorus (P)-potassium (K) briquette (NPKB) were used and compared with control (no fertilizer). Equal nutrient doses were maintained for all the treatments irrespective of fertilizer sources. Static close chamber technique was used for measuring GHG emission. Depending on treatments, total methane (CH4), nitrous oxide and carbon dioxide (CO2) fluxes were 8.16–10.85, 0.57-0.49-0.59 and 1739–2309 kg ha−1 season−1, respectively and net GWPs varied from −1292 to −2438 kg CO2 eq. ha−1 season−1. Wheat grain yields significantly varied from 3.2 to 3.9 t ha−1 because of N sources and rates. Use of USG for wheat cultivation can increase CO2 removal about 22–88% from the atmosphere along with about 2–14% grain yield and 26–48% soil organic carbon (SOC) sequestration improvements compared to other N sources in Bangladesh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
4.20%
发文量
107
期刊介绍: rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas: plant nutrition fertilizers manure soil tillage soil biotechnology and ecophysiology amelioration irrigation and drainage plant production on arable and grass land agroclimatology landscape formation and environmental management in rural regions management of natural and created wetland ecosystems bio-geochemical processes soil-plant-microbe interactions and rhizosphere processes soil morphology, classification, monitoring, heterogeneity and scales reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged. As well as original contributions, the Journal also publishes current reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信