关于q-李群、q-李代数和q-齐次空间的进一步结果

IF 0.8 Q2 MATHEMATICS
T. Ernst
{"title":"关于q-李群、q-李代数和q-齐次空间的进一步结果","authors":"T. Ernst","doi":"10.1515/spma-2020-0129","DOIUrl":null,"url":null,"abstract":"Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples SUq(1,1)SOq(2){{S{U_q}\\left( {1,1} \\right)} \\over {S{O_q}\\left( 2 \\right)}} and SOq(3)SOq(2){{S{O_q}\\left( 3 \\right)} \\over {S{O_q}\\left( 2 \\right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"119 - 148"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0129","citationCount":"0","resultStr":"{\"title\":\"Further results on q-Lie groups, q-Lie algebras and q-homogeneous spaces\",\"authors\":\"T. Ernst\",\"doi\":\"10.1515/spma-2020-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples SUq(1,1)SOq(2){{S{U_q}\\\\left( {1,1} \\\\right)} \\\\over {S{O_q}\\\\left( 2 \\\\right)}} and SOq(3)SOq(2){{S{O_q}\\\\left( 3 \\\\right)} \\\\over {S{O_q}\\\\left( 2 \\\\right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"119 - 148\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们以一种与基域k无关的方式引入了q-李代数的大部分概念,再一次证明了我们可以在稍加修改后保持相同的李代数。我们对所有量都使用非常相似的定义,这意味着证明是相似的。特别是可解量、幂零量、半单q-李代数、Weyl群和Weyl室与一般情况下q = 1完全相同。对于某些已知的q-李群的样本q根的计算包含一个额外的q加法,因此,对于大多数q变形的量,我们在各自的名称中添加一个前缀q。重要的例子是q-Cartan子代数和q-Cartan消元形式。我们正式地引入了q-齐次空间的概念,通过SUq(1,1)SOq(2){{S{U_q}\左({1,1}\右)}\over {S{O_q}\左(2 \右)}和SOq(3)SOq(2){S{O_q}\左(3 \右)}\over {S{O_q}\左(2 \右)}的例子进行了说明,并给出了相应的q-李群和q-测地线。通过引入q-变形半直积,我们可以定义q-李群的精确序列和其他一些有趣的q-齐次空间。我们给出了SLq(2)对应的q-Iwasawa分解的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further results on q-Lie groups, q-Lie algebras and q-homogeneous spaces
Abstract We introduce most of the concepts for q-Lie algebras in a way independent of the base field K. Again it turns out that we can keep the same Lie algebra with a small modification. We use very similar definitions for all quantities, which means that the proofs are similar. In particular, the quantities solvable, nilpotent, semisimple q-Lie algebra, Weyl group and Weyl chamber are identical with the ordinary case q = 1. The computations of sample q-roots for certain well-known q-Lie groups contain an extra q-addition, and consequently, for most of the quantities which are q-deformed, we add a prefix q in the respective name. Important examples are the q-Cartan subalgebra and the q-Cartan Killing form. We introduce the concept q-homogeneous spaces in a formal way exemplified by the examples SUq(1,1)SOq(2){{S{U_q}\left( {1,1} \right)} \over {S{O_q}\left( 2 \right)}} and SOq(3)SOq(2){{S{O_q}\left( 3 \right)} \over {S{O_q}\left( 2 \right)}} with corresponding q-Lie groups and q-geodesics. By introducing a q-deformed semidirect product, we can define exact sequences of q-Lie groups and some other interesting q-homogeneous spaces. We give an example of the corresponding q-Iwasawa decomposition for SLq(2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信