{"title":"具有时滞和声学边界条件的对数粘弹性方程的Blow-up","authors":"Sun‐Hye Park","doi":"10.1515/anona-2022-0310","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions\",\"authors\":\"Sun‐Hye Park\",\"doi\":\"10.1515/anona-2022-0310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0310\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0310","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions
Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.