{"title":"若干商环上的可逆矩阵:识别、生成和分析","authors":"V. Vysotskaya, L. Vysotsky","doi":"10.1515/dma-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. A special version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"423 - 438"},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invertible matrices over some quotient rings: identification, generation, and analysis\",\"authors\":\"V. Vysotskaya, L. Vysotsky\",\"doi\":\"10.1515/dma-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. A special version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"423 - 438\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Invertible matrices over some quotient rings: identification, generation, and analysis
Abstract We study matrices over quotient rings modulo univariate polynomials over a two-element field. Lower bounds for the fraction of the invertible matrices among all such matrices of a given size are obtained. An efficient algorithm for calculating the determinant of matrices over these quotient rings and an algorithm for generating random invertible matrices (with uniform distribution on the set of all invertible matrices) are proposed and analyzed. A special version of the latter algorithm for quotient rings modulo polynomials of form xr − 1 is considered and analyzed. These methods may find practical applications for generating keys of cryptographic schemes based on quasi-cyclic codes such as LEDAcrypt.
期刊介绍:
The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.