因素得分路径分析:SEM的替代方案?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ines Devlieger, Y. Rosseel
{"title":"因素得分路径分析:SEM的替代方案?","authors":"Ines Devlieger, Y. Rosseel","doi":"10.1027/1614-2241/A000130","DOIUrl":null,"url":null,"abstract":"Abstract. Theoretical researchers consider Structural Equation Modeling (SEM) to be the preferred method to study the relationships among latent variables. However, SEM has the disadvantage of requiring a large sample size, especially if the model is complex. Furthermore, since SEM estimates all parameters simultaneously, one misspecification in the model may influence the whole model. For these reasons, applied researchers often use a two-step Factor Score Regression (FSR) approach. In the first step, factor scores are calculated for the latent variables, which are used to perform a linear regression in the second step. However, this method results in incorrect regression coefficients. Croon (2002) developed a method that corrects for this bias. We combine this method of Croon (2002) with path analysis, resulting in Factor Score Path Analysis. This method results in correct path coefficients and has some advantages over SEM: it requires smaller sample sizes, can handle more complex models and the method ...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Factor score path analysis: An alternative for SEM?\",\"authors\":\"Ines Devlieger, Y. Rosseel\",\"doi\":\"10.1027/1614-2241/A000130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Theoretical researchers consider Structural Equation Modeling (SEM) to be the preferred method to study the relationships among latent variables. However, SEM has the disadvantage of requiring a large sample size, especially if the model is complex. Furthermore, since SEM estimates all parameters simultaneously, one misspecification in the model may influence the whole model. For these reasons, applied researchers often use a two-step Factor Score Regression (FSR) approach. In the first step, factor scores are calculated for the latent variables, which are used to perform a linear regression in the second step. However, this method results in incorrect regression coefficients. Croon (2002) developed a method that corrects for this bias. We combine this method of Croon (2002) with path analysis, resulting in Factor Score Path Analysis. This method results in correct path coefficients and has some advantages over SEM: it requires smaller sample sizes, can handle more complex models and the method ...\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2017-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 90

摘要

摘要理论研究人员认为,结构方程建模(SEM)是研究潜在变量之间关系的首选方法。然而,SEM的缺点是需要大的样本量,尤其是在模型复杂的情况下。此外,由于SEM同时估计所有参数,因此模型中的一个错误指定可能会影响整个模型。由于这些原因,应用研究人员通常使用两步因素得分回归(FSR)方法。在第一步中,计算潜在变量的因子得分,这些因子得分用于在第二步中执行线性回归。然而,这种方法会导致不正确的回归系数。Croon(2002)开发了一种方法来纠正这种偏差。我们将Croon(2002)的这种方法与路径分析相结合,得出了因子得分路径分析。该方法得到了正确的路径系数,并且与SEM相比具有一些优点:它需要更小的样本量,可以处理更复杂的模型,并且该方法。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factor score path analysis: An alternative for SEM?
Abstract. Theoretical researchers consider Structural Equation Modeling (SEM) to be the preferred method to study the relationships among latent variables. However, SEM has the disadvantage of requiring a large sample size, especially if the model is complex. Furthermore, since SEM estimates all parameters simultaneously, one misspecification in the model may influence the whole model. For these reasons, applied researchers often use a two-step Factor Score Regression (FSR) approach. In the first step, factor scores are calculated for the latent variables, which are used to perform a linear regression in the second step. However, this method results in incorrect regression coefficients. Croon (2002) developed a method that corrects for this bias. We combine this method of Croon (2002) with path analysis, resulting in Factor Score Path Analysis. This method results in correct path coefficients and has some advantages over SEM: it requires smaller sample sizes, can handle more complex models and the method ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信