合成碳用作生物柴油催化剂的可行性研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tourangbam RAHUL SINGH, Thokchom Subhaschandra Singh, Tikendra Nath Verma, Prerana Nashine, U. Rajak
{"title":"合成碳用作生物柴油催化剂的可行性研究","authors":"Tourangbam RAHUL SINGH, Thokchom Subhaschandra Singh, Tikendra Nath Verma, Prerana Nashine, U. Rajak","doi":"10.18186/thermal.1197303","DOIUrl":null,"url":null,"abstract":"The thrust in biofuel production has pushed researchers in finding more of environmentally friendly materials for use as catalyst in the biofuel production process. Commercially available catalyst materials are not sustainable, and they generally incur higher cost of operation. In the present study, locally available native woods species of Manipur, India namely, Yenthou (Arundo donax.L) and Uningthou (Phoebe hainesiana) were exposed at elevated temperature of 400°C and variable exposure time of 90 and 120 minutes for possible use as catalyst during biofuel production. Muffle furnace has been employed for production of catalyst and characterization techniques such as XRD, FT-IR and SEM with EDX are used. XRD analysis shows diffraction peak corresponding to (0 0 2), (1 0 0) and (1 0 1) of the face centered cubic phase at 28.61°, 28.54° and 30.02° respectively while Scherrer equation shows 29.737 nm as average grain size. FT-IR analysis also shows C=C formation from the samples. The SEM & EDX analysis shows good formation of carbon in the catalyst and the weight % of the components are obtained to be 89.18% and 10.82% for C and O respectively. Transesterification of waste cooking oil at 5% (wt%), 10:1, 75°C and 60 minutes for catalyst loading rate, alcohol-to-oil ratio, reaction temperature and reaction time respectively shows conversion rate of 87.4±1.3% with reusability of 3 times.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of synthesized carbon as catalyst in biodiesel production\",\"authors\":\"Tourangbam RAHUL SINGH, Thokchom Subhaschandra Singh, Tikendra Nath Verma, Prerana Nashine, U. Rajak\",\"doi\":\"10.18186/thermal.1197303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thrust in biofuel production has pushed researchers in finding more of environmentally friendly materials for use as catalyst in the biofuel production process. Commercially available catalyst materials are not sustainable, and they generally incur higher cost of operation. In the present study, locally available native woods species of Manipur, India namely, Yenthou (Arundo donax.L) and Uningthou (Phoebe hainesiana) were exposed at elevated temperature of 400°C and variable exposure time of 90 and 120 minutes for possible use as catalyst during biofuel production. Muffle furnace has been employed for production of catalyst and characterization techniques such as XRD, FT-IR and SEM with EDX are used. XRD analysis shows diffraction peak corresponding to (0 0 2), (1 0 0) and (1 0 1) of the face centered cubic phase at 28.61°, 28.54° and 30.02° respectively while Scherrer equation shows 29.737 nm as average grain size. FT-IR analysis also shows C=C formation from the samples. The SEM & EDX analysis shows good formation of carbon in the catalyst and the weight % of the components are obtained to be 89.18% and 10.82% for C and O respectively. Transesterification of waste cooking oil at 5% (wt%), 10:1, 75°C and 60 minutes for catalyst loading rate, alcohol-to-oil ratio, reaction temperature and reaction time respectively shows conversion rate of 87.4±1.3% with reusability of 3 times.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1197303\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1197303","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物燃料生产的推动促使研究人员寻找更多环保材料,用作生物燃料生产过程中的催化剂。市售的催化剂材料是不可持续的,并且它们通常产生更高的操作成本。在本研究中,印度曼尼普尔当地可获得的本土树种Yenthou(Arundo donax.L)和Uningtou(海南楠)暴露在400°C的高温和90和120分钟的可变暴露时间下,可能在生物燃料生产过程中用作催化剂。采用马弗炉生产催化剂,并采用XRD、FT-IR和EDX扫描电镜等表征技术。XRD分析表明,面心立方相的衍射峰分别在28.61°、28.54°和30.02°处对应于(0 0 2)、(1 0 0)和(1 0 1),Scherrer方程显示平均晶粒尺寸为29.737nm。FT-IR分析还显示样品形成了C=C。SEM和EDX分析表明,催化剂中碳的形成良好,C和O的组分重量百分比分别为89.18%和10.82%。在催化剂负载率、醇油比、反应温度和反应时间分别为5%(wt%)、10:1、75°C和60分钟的条件下,废食用油的酯交换反应转化率为87.4±1.3%,重复使用次数为3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility study of synthesized carbon as catalyst in biodiesel production
The thrust in biofuel production has pushed researchers in finding more of environmentally friendly materials for use as catalyst in the biofuel production process. Commercially available catalyst materials are not sustainable, and they generally incur higher cost of operation. In the present study, locally available native woods species of Manipur, India namely, Yenthou (Arundo donax.L) and Uningthou (Phoebe hainesiana) were exposed at elevated temperature of 400°C and variable exposure time of 90 and 120 minutes for possible use as catalyst during biofuel production. Muffle furnace has been employed for production of catalyst and characterization techniques such as XRD, FT-IR and SEM with EDX are used. XRD analysis shows diffraction peak corresponding to (0 0 2), (1 0 0) and (1 0 1) of the face centered cubic phase at 28.61°, 28.54° and 30.02° respectively while Scherrer equation shows 29.737 nm as average grain size. FT-IR analysis also shows C=C formation from the samples. The SEM & EDX analysis shows good formation of carbon in the catalyst and the weight % of the components are obtained to be 89.18% and 10.82% for C and O respectively. Transesterification of waste cooking oil at 5% (wt%), 10:1, 75°C and 60 minutes for catalyst loading rate, alcohol-to-oil ratio, reaction temperature and reaction time respectively shows conversion rate of 87.4±1.3% with reusability of 3 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信