凸极小子与Lévy过程的涨落理论

Pub Date : 2021-05-31 DOI:10.30757/ALEA.v19-39
Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c
{"title":"凸极小子与Lévy过程的涨落理论","authors":"Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c","doi":"10.30757/ALEA.v19-39","DOIUrl":null,"url":null,"abstract":"We establish a novel characterisation of the law of the convex minorant of any L\\'evy process. Our self-contained elementary proof is based on the analysis of piecewise linear convex functions and requires only very basic properties of L\\'evy processes. Our main result provides a new simple and self-contained approach to the fluctuation theory of L\\'evy processes, circumventing local time and excursion theory. Easy corollaries include classical theorems, such as Rogozin's regularity criterion, Spitzer's identities and the Wiener-Hopf factorisation, as well as a novel factorisation identity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Convex minorants and the fluctuation theory of Lévy processes\",\"authors\":\"Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c\",\"doi\":\"10.30757/ALEA.v19-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a novel characterisation of the law of the convex minorant of any L\\\\'evy process. Our self-contained elementary proof is based on the analysis of piecewise linear convex functions and requires only very basic properties of L\\\\'evy processes. Our main result provides a new simple and self-contained approach to the fluctuation theory of L\\\\'evy processes, circumventing local time and excursion theory. Easy corollaries include classical theorems, such as Rogozin's regularity criterion, Spitzer's identities and the Wiener-Hopf factorisation, as well as a novel factorisation identity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/ALEA.v19-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v19-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们建立了任何L’evy过程的凸次量定律的一个新的刻画。我们的自包含初等证明是基于对分段线性凸函数的分析,并且只需要L’evy过程的非常基本的性质。我们的主要结果为L’evy过程的波动理论提供了一种新的简单而独立的方法,绕过了局部时间和偏移理论。简单的推论包括经典定理,如Rogozin正则性准则、Spitzer恒等式和Wiener-Hopf因子分解,以及一个新的因子分解恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Convex minorants and the fluctuation theory of Lévy processes
We establish a novel characterisation of the law of the convex minorant of any L\'evy process. Our self-contained elementary proof is based on the analysis of piecewise linear convex functions and requires only very basic properties of L\'evy processes. Our main result provides a new simple and self-contained approach to the fluctuation theory of L\'evy processes, circumventing local time and excursion theory. Easy corollaries include classical theorems, such as Rogozin's regularity criterion, Spitzer's identities and the Wiener-Hopf factorisation, as well as a novel factorisation identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信