{"title":"非坍缩RCD度量空间中定量奇异地层的体积边界","authors":"Gioacchino Antonelli, Elia Brué, Daniele Semola","doi":"10.1515/agms-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary ([20, Remark 3.8]) of ncRCD(K, N) spaces.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"7 1","pages":"158 - 178"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0008","citationCount":"16","resultStr":"{\"title\":\"Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces\",\"authors\":\"Gioacchino Antonelli, Elia Brué, Daniele Semola\",\"doi\":\"10.1515/agms-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary ([20, Remark 3.8]) of ncRCD(K, N) spaces.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"7 1\",\"pages\":\"158 - 178\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2019-0008\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2019-0008\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0008","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces
Abstract The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary ([20, Remark 3.8]) of ncRCD(K, N) spaces.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.