关于加权Finsler流形与具有ε-范围的时空的比较定理

Pub Date : 2020-07-01 DOI:10.1515/agms-2020-0131
Yufeng Lu, E. Minguzzi, Shin-ichi Ohta
{"title":"关于加权Finsler流形与具有ε-范围的时空的比较定理","authors":"Yufeng Lu, E. Minguzzi, Shin-ichi Ohta","doi":"10.1515/agms-2020-0131","DOIUrl":null,"url":null,"abstract":"Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with ϵ-Range\",\"authors\":\"Yufeng Lu, E. Minguzzi, Shin-ichi Ohta\",\"doi\":\"10.1515/agms-2020-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

摘要我们利用权函数建立了加权Finsler流形的Bonnet–Myers定理、拉普拉斯比较定理和Bishop–Gromov体积比较定理,以及加权Ricci曲率有界的加权Finsleer时空。这些比较定理是用我们在前一篇文章中引入的ε-范围公式化的,这为不同有效维数的插值加权Ricci曲率条件提供了一个自然的观点。我们的一些结果甚至对于加权黎曼流形也是新的,并推广了Wylie–Yeroshkin和Kuwae–Li的比较定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with ϵ-Range
Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信