{"title":"关于加权Finsler流形与具有ε-范围的时空的比较定理","authors":"Yufeng Lu, E. Minguzzi, Shin-ichi Ohta","doi":"10.1515/agms-2020-0131","DOIUrl":null,"url":null,"abstract":"Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with ϵ-Range\",\"authors\":\"Yufeng Lu, E. Minguzzi, Shin-ichi Ohta\",\"doi\":\"10.1515/agms-2020-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison Theorems on Weighted Finsler Manifolds and Spacetimes with ϵ-Range
Abstract We establish the Bonnet–Myers theorem, Laplacian comparison theorem, and Bishop–Gromov volume comparison theorem for weighted Finsler manifolds as well as weighted Finsler spacetimes, of weighted Ricci curvature bounded below by using the weight function. These comparison theorems are formulated with ϵ-range introduced in our previous paper, that provides a natural viewpoint of interpolating weighted Ricci curvature conditions of different effective dimensions. Some of our results are new even for weighted Riemannian manifolds and generalize comparison theorems of Wylie–Yeroshkin and Kuwae–Li.