具有势的非线性Schrödinger方程的最小质量爆破解

IF 0.4 4区 数学 Q4 MATHEMATICS
Naoki Matsui
{"title":"具有势的非线性Schrödinger方程的最小质量爆破解","authors":"Naoki Matsui","doi":"10.2748/tmj.20211216","DOIUrl":null,"url":null,"abstract":"We consider the following nonlinear Schr\\\"{o}dinger equation with a potential in $\\mathbb{R}^N$. We studied the existence of an initial value with critical mass for which the corresponding solution blows up. A previous study demonstrated the existence of an initial value for which the corresponding solution blows up when $N=1$ or $2$. In this work, without any restrictions on the number of dimensions $N$, we construct a critical-mass initial value for which the corresponding solution blows up in finite time and derive its blow-up rate.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential\",\"authors\":\"Naoki Matsui\",\"doi\":\"10.2748/tmj.20211216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following nonlinear Schr\\\\\\\"{o}dinger equation with a potential in $\\\\mathbb{R}^N$. We studied the existence of an initial value with critical mass for which the corresponding solution blows up. A previous study demonstrated the existence of an initial value for which the corresponding solution blows up when $N=1$ or $2$. In this work, without any restrictions on the number of dimensions $N$, we construct a critical-mass initial value for which the corresponding solution blows up in finite time and derive its blow-up rate.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20211216\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20211216","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑以下非线性Schr{o}dinger势为$\mathbb{R}^N$的方程。我们研究了具有临界质量的初始值的存在性,对于该初始值,相应的解会爆炸。先前的一项研究证明了初始值的存在,当$N=1$或$2$时,相应的解决方案会爆炸。在这项工作中,在对维数$N$没有任何限制的情况下,我们构造了一个临界质量初始值,对应的解在有限时间内爆炸,并导出其爆炸率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential
We consider the following nonlinear Schr\"{o}dinger equation with a potential in $\mathbb{R}^N$. We studied the existence of an initial value with critical mass for which the corresponding solution blows up. A previous study demonstrated the existence of an initial value for which the corresponding solution blows up when $N=1$ or $2$. In this work, without any restrictions on the number of dimensions $N$, we construct a critical-mass initial value for which the corresponding solution blows up in finite time and derive its blow-up rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信