$\ mathm {PL}_{+} I$的子群,不嵌入到Thompson的群$F$中

Pub Date : 2021-03-27 DOI:10.4171/ggd/708
J. Hyde, J. Moore
{"title":"$\\ mathm {PL}_{+} I$的子群,不嵌入到Thompson的群$F$中","authors":"J. Hyde, J. Moore","doi":"10.4171/ggd/708","DOIUrl":null,"url":null,"abstract":"We will give a general criterion - the existence of an $F$-obstruction - for showing that a subgroup of $\\mathrm{PL}_+ I$ does not embed into Thompson's group $F$. An immediate consequence is that Cleary's\"golden ratio\"group $F_\\tau$ does not embed into $F$. Our results also yield a new proof that Stein's groups $F_{p,q}$ do not embed into $F$, a result first established by Lodha using his theory of coherent actions. We develop the basic theory of $F$-obstructions and show that they exhibit certain rigidity phenomena of independent interest. In the course of establishing the main result of the paper, we prove a dichotomy theorem for subgroups of $\\mathrm{PL}_+ I$. In addition to playing a central role in our proof, it is strong enough to imply both Rubin's Reconstruction Theorem restricted to the class of subgroups of $\\mathrm{PL}_+ I$ and also Brin's Ubiquity Theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subgroups of $\\\\mathrm{PL}_{+} I$ which do not embed into Thompson’s group $F$\",\"authors\":\"J. Hyde, J. Moore\",\"doi\":\"10.4171/ggd/708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will give a general criterion - the existence of an $F$-obstruction - for showing that a subgroup of $\\\\mathrm{PL}_+ I$ does not embed into Thompson's group $F$. An immediate consequence is that Cleary's\\\"golden ratio\\\"group $F_\\\\tau$ does not embed into $F$. Our results also yield a new proof that Stein's groups $F_{p,q}$ do not embed into $F$, a result first established by Lodha using his theory of coherent actions. We develop the basic theory of $F$-obstructions and show that they exhibit certain rigidity phenomena of independent interest. In the course of establishing the main result of the paper, we prove a dichotomy theorem for subgroups of $\\\\mathrm{PL}_+ I$. In addition to playing a central role in our proof, it is strong enough to imply both Rubin's Reconstruction Theorem restricted to the class of subgroups of $\\\\mathrm{PL}_+ I$ and also Brin's Ubiquity Theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将给出一个普遍的标准——$F$阻塞的存在性——来证明$\mathrm的子群{PL}_+I$没有嵌入到Thompson的组$F$中。一个直接的后果是,克利里的“黄金比率”组$F_\tau$没有嵌入$F$中。我们的结果还产生了一个新的证明,即Stein的群$F_{p,q}$没有嵌入到$F$中,这是Lodha利用他的相干作用理论首次建立的结果。我们发展了$F$-障碍的基本理论,并证明它们表现出一定的独立利益的刚性现象。在建立本文主要结果的过程中,我们证明了$\mathrm子群的一个二分法定理{PL}_+I$。除了在我们的证明中发挥核心作用外,它还足够强,可以暗示鲁宾重构定理都局限于$\mathrm的子群类{PL}_+I$和Brin的普遍性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Subgroups of $\mathrm{PL}_{+} I$ which do not embed into Thompson’s group $F$
We will give a general criterion - the existence of an $F$-obstruction - for showing that a subgroup of $\mathrm{PL}_+ I$ does not embed into Thompson's group $F$. An immediate consequence is that Cleary's"golden ratio"group $F_\tau$ does not embed into $F$. Our results also yield a new proof that Stein's groups $F_{p,q}$ do not embed into $F$, a result first established by Lodha using his theory of coherent actions. We develop the basic theory of $F$-obstructions and show that they exhibit certain rigidity phenomena of independent interest. In the course of establishing the main result of the paper, we prove a dichotomy theorem for subgroups of $\mathrm{PL}_+ I$. In addition to playing a central role in our proof, it is strong enough to imply both Rubin's Reconstruction Theorem restricted to the class of subgroups of $\mathrm{PL}_+ I$ and also Brin's Ubiquity Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信