类石墨烯纳米阵列的设计及其光学吸收特性

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY
Jian-Jhou Zeng, Shuqi Hu, Lei Chen, Jianrong Yang, Jing He
{"title":"类石墨烯纳米阵列的设计及其光学吸收特性","authors":"Jian-Jhou Zeng, Shuqi Hu, Lei Chen, Jianrong Yang, Jing He","doi":"10.1117/1.JNP.17.026003","DOIUrl":null,"url":null,"abstract":"Abstract. Bulk-layered materials were constructed into nanowall arrays, and their optical absorption properties were investigated by the finite-difference time-domain technique. The results showed that the nanowall array exhibits excellent absorption properties in both ultraviolet and visible bands. For WS2, MoS2, WSe2, MoSe2, and MoTe2, when the excitation wavelength increases to a certain value, the absorption begins to obviously decrease, and the corresponding excitation wavelength shows a redshift trend. However, the absorptivity of graphene nanowall arrays remains above 0.9 in the 350- to 1200-nm band. In addition, with similar structural parameters, the absorption properties of nanowall arrays are better than those of nanorod arrays. The change in the structural parameter and morphology can lead to an increase in the pore number, specific surface area, and multistage reflection and achieve optical absorption enhancement. Graphene nanowall arrays show excellent absorption properties by our experimental measurement.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"026003 - 026003"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of graphene-like nanowall arrays and their optical absorption properties\",\"authors\":\"Jian-Jhou Zeng, Shuqi Hu, Lei Chen, Jianrong Yang, Jing He\",\"doi\":\"10.1117/1.JNP.17.026003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Bulk-layered materials were constructed into nanowall arrays, and their optical absorption properties were investigated by the finite-difference time-domain technique. The results showed that the nanowall array exhibits excellent absorption properties in both ultraviolet and visible bands. For WS2, MoS2, WSe2, MoSe2, and MoTe2, when the excitation wavelength increases to a certain value, the absorption begins to obviously decrease, and the corresponding excitation wavelength shows a redshift trend. However, the absorptivity of graphene nanowall arrays remains above 0.9 in the 350- to 1200-nm band. In addition, with similar structural parameters, the absorption properties of nanowall arrays are better than those of nanorod arrays. The change in the structural parameter and morphology can lead to an increase in the pore number, specific surface area, and multistage reflection and achieve optical absorption enhancement. Graphene nanowall arrays show excellent absorption properties by our experimental measurement.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"17 1\",\"pages\":\"026003 - 026003\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.026003\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.026003","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要将块状层状材料构建成纳米壁阵列,利用时域有限差分技术研究了其光吸收特性。结果表明,该纳米墙阵列在紫外和可见光波段均具有优异的吸收性能。对于WS2、MoS2、WSe2、MoSe2和MoTe2,当激发波长增加到一定值时,吸收开始明显减少,对应的激发波长呈现红移趋势。然而,在350- 1200nm波段,石墨烯纳米壁阵列的吸收率保持在0.9以上。此外,在结构参数相似的情况下,纳米壁阵列的吸收性能优于纳米棒阵列。结构参数和形貌的改变可以导致孔隙数、比表面积和多级反射的增加,从而实现光吸收的增强。通过实验测量,石墨烯纳米壁阵列显示出优异的吸收性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of graphene-like nanowall arrays and their optical absorption properties
Abstract. Bulk-layered materials were constructed into nanowall arrays, and their optical absorption properties were investigated by the finite-difference time-domain technique. The results showed that the nanowall array exhibits excellent absorption properties in both ultraviolet and visible bands. For WS2, MoS2, WSe2, MoSe2, and MoTe2, when the excitation wavelength increases to a certain value, the absorption begins to obviously decrease, and the corresponding excitation wavelength shows a redshift trend. However, the absorptivity of graphene nanowall arrays remains above 0.9 in the 350- to 1200-nm band. In addition, with similar structural parameters, the absorption properties of nanowall arrays are better than those of nanorod arrays. The change in the structural parameter and morphology can lead to an increase in the pore number, specific surface area, and multistage reflection and achieve optical absorption enhancement. Graphene nanowall arrays show excellent absorption properties by our experimental measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信