计算具有有理二扭点的椭圆曲线上的有理点

IF 0.6 4区 数学 Q3 MATHEMATICS
F. Naccarato
{"title":"计算具有有理二扭点的椭圆曲线上的有理点","authors":"F. Naccarato","doi":"10.4171/rlm/945","DOIUrl":null,"url":null,"abstract":"Let $E/\\mathbb{Q}$ be an elliptic curve over the rational numbers. It is known, by the work of Bombieri and Zannier, that if $E$ has full rational $2$-torsion, the number $N_E(B)$ of rational points with Weil height bounded by $B$ is $\\exp\\left(O\\left(\\frac{\\log B}{\\sqrt{\\log\\log B}}\\right)\\right)$. In this paper we exploit the method of descent via $2$-isogeny to extend this result to elliptic curves with just one nontrivial rational $2$-torsion point. Moreover, we make use of a result of Petsche to derive the stronger upper bound $N_{E}(B) = \\exp\\left(O\\left(\\frac{\\log B}{\\log\\log B}\\right)\\right)$ for these curves and to remove a deep transcendence theory ingredient from the proof.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Counting rational points on elliptic curves with a rational 2-torsion point\",\"authors\":\"F. Naccarato\",\"doi\":\"10.4171/rlm/945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E/\\\\mathbb{Q}$ be an elliptic curve over the rational numbers. It is known, by the work of Bombieri and Zannier, that if $E$ has full rational $2$-torsion, the number $N_E(B)$ of rational points with Weil height bounded by $B$ is $\\\\exp\\\\left(O\\\\left(\\\\frac{\\\\log B}{\\\\sqrt{\\\\log\\\\log B}}\\\\right)\\\\right)$. In this paper we exploit the method of descent via $2$-isogeny to extend this result to elliptic curves with just one nontrivial rational $2$-torsion point. Moreover, we make use of a result of Petsche to derive the stronger upper bound $N_{E}(B) = \\\\exp\\\\left(O\\\\left(\\\\frac{\\\\log B}{\\\\log\\\\log B}\\\\right)\\\\right)$ for these curves and to remove a deep transcendence theory ingredient from the proof.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/945\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/945","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$E/\mathbb{Q}$是有理数上的椭圆曲线。Bombieri和Zannier的工作表明,如果$E$具有全有理$2$-扭转,则Weil高度为$B$的有理点的数目$N_E(B)$为$\exp\left(O\left)。在本文中,我们利用经由$2$-同构的下降方法将这一结果推广到只有一个非平凡有理$2$-扭点的椭圆曲线。此外,我们利用Petsche的一个结果导出了这些曲线的更强上界$N_{E}(B)=\exp\left(O\left。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting rational points on elliptic curves with a rational 2-torsion point
Let $E/\mathbb{Q}$ be an elliptic curve over the rational numbers. It is known, by the work of Bombieri and Zannier, that if $E$ has full rational $2$-torsion, the number $N_E(B)$ of rational points with Weil height bounded by $B$ is $\exp\left(O\left(\frac{\log B}{\sqrt{\log\log B}}\right)\right)$. In this paper we exploit the method of descent via $2$-isogeny to extend this result to elliptic curves with just one nontrivial rational $2$-torsion point. Moreover, we make use of a result of Petsche to derive the stronger upper bound $N_{E}(B) = \exp\left(O\left(\frac{\log B}{\log\log B}\right)\right)$ for these curves and to remove a deep transcendence theory ingredient from the proof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信