{"title":"场演算:没有费曼图的量子和统计场理论","authors":"J. Gough","doi":"10.3842/SIGMA.2022.044","DOIUrl":null,"url":null,"abstract":"For a given base space $M$ (spacetime), we consider the Guichardet space over the Guichardet space over $M$. Here we develop a ''field calculus'' based on the Guichardet integral. This is the natural setting in which to describe Green function relations for Boson systems. Here we can follow the suggestion of Schwinger and develop a differential (local field) approach rather than the integral one pioneered by Feynman. This is helped by a DEFG (Dyson-Einstein-Feynman-Guichardet) shorthand which greatly simplifies expressions. This gives a convenient framework for the formal approach of Schwinger and Tomonaga as opposed to Feynman diagrams. The Dyson-Schwinger is recast in this language with the help of bosonic creation/annihilation operators. We also give the combinatorial approach to tree-expansions.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Calculus: Quantum and Statistical Field Theory without the Feynman Diagrams\",\"authors\":\"J. Gough\",\"doi\":\"10.3842/SIGMA.2022.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a given base space $M$ (spacetime), we consider the Guichardet space over the Guichardet space over $M$. Here we develop a ''field calculus'' based on the Guichardet integral. This is the natural setting in which to describe Green function relations for Boson systems. Here we can follow the suggestion of Schwinger and develop a differential (local field) approach rather than the integral one pioneered by Feynman. This is helped by a DEFG (Dyson-Einstein-Feynman-Guichardet) shorthand which greatly simplifies expressions. This gives a convenient framework for the formal approach of Schwinger and Tomonaga as opposed to Feynman diagrams. The Dyson-Schwinger is recast in this language with the help of bosonic creation/annihilation operators. We also give the combinatorial approach to tree-expansions.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2022.044\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2022.044","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Field Calculus: Quantum and Statistical Field Theory without the Feynman Diagrams
For a given base space $M$ (spacetime), we consider the Guichardet space over the Guichardet space over $M$. Here we develop a ''field calculus'' based on the Guichardet integral. This is the natural setting in which to describe Green function relations for Boson systems. Here we can follow the suggestion of Schwinger and develop a differential (local field) approach rather than the integral one pioneered by Feynman. This is helped by a DEFG (Dyson-Einstein-Feynman-Guichardet) shorthand which greatly simplifies expressions. This gives a convenient framework for the formal approach of Schwinger and Tomonaga as opposed to Feynman diagrams. The Dyson-Schwinger is recast in this language with the help of bosonic creation/annihilation operators. We also give the combinatorial approach to tree-expansions.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.