波斯尼亚和黑塞哥维那保险市场中基于决策树的分类费率制定

IF 0.6 Q4 ECONOMICS
Amela Omerašević, Jasmina Selimović
{"title":"波斯尼亚和黑塞哥维那保险市场中基于决策树的分类费率制定","authors":"Amela Omerašević, Jasmina Selimović","doi":"10.2478/jeb-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the impact of risk classification on life insurance ratemaking with particular reference to Bosnia and Herzegovina (BiH). The research is based on a sample of over eighteen thousand insurance policies for passenger vehicles collected over the period 2015-2020. In our empirical investigation we develop a standard risk model based on the application of Poisson Generalized linear models (GLM) for claims frequency estimate and Gamma GLM for claim severity estimate. The analysis reveals that GLM does not provide a reliable parameter estimates for Multi-level factor (MLF) categorical predictors. Although GLM is widely used method to deter insurance premiums, improvements of GLM by using the data mining methods identified in this paper may solve practical challenges for the risk models. The popularity of applying data mining methods in the actuarial community has been growing in recent years due to its efficiency and precision. These models are recommended to be considered in BiH and South East European region in general.","PeriodicalId":43828,"journal":{"name":"South East European Journal of Economics and Business","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina\",\"authors\":\"Amela Omerašević, Jasmina Selimović\",\"doi\":\"10.2478/jeb-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper investigates the impact of risk classification on life insurance ratemaking with particular reference to Bosnia and Herzegovina (BiH). The research is based on a sample of over eighteen thousand insurance policies for passenger vehicles collected over the period 2015-2020. In our empirical investigation we develop a standard risk model based on the application of Poisson Generalized linear models (GLM) for claims frequency estimate and Gamma GLM for claim severity estimate. The analysis reveals that GLM does not provide a reliable parameter estimates for Multi-level factor (MLF) categorical predictors. Although GLM is widely used method to deter insurance premiums, improvements of GLM by using the data mining methods identified in this paper may solve practical challenges for the risk models. The popularity of applying data mining methods in the actuarial community has been growing in recent years due to its efficiency and precision. These models are recommended to be considered in BiH and South East European region in general.\",\"PeriodicalId\":43828,\"journal\":{\"name\":\"South East European Journal of Economics and Business\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South East European Journal of Economics and Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jeb-2020-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South East European Journal of Economics and Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jeb-2020-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了风险分类对人寿保险费率制定的影响,特别参考了波斯尼亚和黑塞哥维那(BiH)。该研究基于2015-2020年期间收集的超过1.8万份乘用车保单样本。在我们的实证研究中,我们基于泊松广义线性模型(GLM)用于索赔频率估计和Gamma GLM用于索赔严重性估计的应用,开发了一个标准的风险模型。分析表明,GLM不能为多级因子(MLF)分类预测提供可靠的参数估计。虽然GLM是一种被广泛使用的保费控制方法,但利用本文确定的数据挖掘方法对GLM进行改进可能会解决风险模型的实际挑战。近年来,由于数据挖掘方法的效率和精度,它在精算界的应用日益普及。建议波黑和整个东南欧区域考虑这些模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina
Abstract This paper investigates the impact of risk classification on life insurance ratemaking with particular reference to Bosnia and Herzegovina (BiH). The research is based on a sample of over eighteen thousand insurance policies for passenger vehicles collected over the period 2015-2020. In our empirical investigation we develop a standard risk model based on the application of Poisson Generalized linear models (GLM) for claims frequency estimate and Gamma GLM for claim severity estimate. The analysis reveals that GLM does not provide a reliable parameter estimates for Multi-level factor (MLF) categorical predictors. Although GLM is widely used method to deter insurance premiums, improvements of GLM by using the data mining methods identified in this paper may solve practical challenges for the risk models. The popularity of applying data mining methods in the actuarial community has been growing in recent years due to its efficiency and precision. These models are recommended to be considered in BiH and South East European region in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信