一种基于改进基尺度熵的退化特征提取方法

IF 0.8 4区 工程技术 Q4 ACOUSTICS
Z. Chen, Changzhuan Shao, Xiong Hu, Bing Wang, Daobing Zhang, Xiaomei Tao
{"title":"一种基于改进基尺度熵的退化特征提取方法","authors":"Z. Chen, Changzhuan Shao, Xiong Hu, Bing Wang, Daobing Zhang, Xiaomei Tao","doi":"10.20855/IJAV.2020.25.11717","DOIUrl":null,"url":null,"abstract":"In order to track the performance degradation trend accurately, a novel degradation feature extraction technique is proposed based on improved base-scale entropy. A unified base scale is proposed and a new symbol standard is defined to overcome the disadvantages of the base-scale entropy method, so as to symbolize signal amplitude to characterize information amount under different degradation conditions quantitatively. A lifetime dataset of rolling bearing from the IMS Bearing Experiment Center is introduced. For instance, analysis and some entropy-based techniques including fuzzy entropy, approximate entropy and sample entropy are imported for comparison. The results show that the improved basic-scale technique is able to characterize information amount of the signal amplitude distribution, so that the characterizing performance degradation degree of bearing shows a proportional relationship. When comparing the entropy-based techniques, the improved base-scale entropy technique has a faster calculation speed and better algorithm stability.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"26 1","pages":"41-48"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Degradation Feature Extraction Technique Based on Improved Base-Scale Entropy\",\"authors\":\"Z. Chen, Changzhuan Shao, Xiong Hu, Bing Wang, Daobing Zhang, Xiaomei Tao\",\"doi\":\"10.20855/IJAV.2020.25.11717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to track the performance degradation trend accurately, a novel degradation feature extraction technique is proposed based on improved base-scale entropy. A unified base scale is proposed and a new symbol standard is defined to overcome the disadvantages of the base-scale entropy method, so as to symbolize signal amplitude to characterize information amount under different degradation conditions quantitatively. A lifetime dataset of rolling bearing from the IMS Bearing Experiment Center is introduced. For instance, analysis and some entropy-based techniques including fuzzy entropy, approximate entropy and sample entropy are imported for comparison. The results show that the improved basic-scale technique is able to characterize information amount of the signal amplitude distribution, so that the characterizing performance degradation degree of bearing shows a proportional relationship. When comparing the entropy-based techniques, the improved base-scale entropy technique has a faster calculation speed and better algorithm stability.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"26 1\",\"pages\":\"41-48\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/IJAV.2020.25.11717\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2020.25.11717","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

为了准确跟踪性能退化趋势,提出了一种基于改进基尺度熵的退化特征提取方法。提出了统一的基尺度,并定义了新的符号标准,克服了基尺度熵法的缺点,将信号幅度符号化,定量表征不同退化条件下的信息量。介绍了IMS轴承实验中心的滚动轴承寿命数据集。例如,引入分析和一些基于熵的技术,包括模糊熵、近似熵和样本熵进行比较。结果表明,改进的基尺度技术能够表征信号幅度分布的信息量,使表征轴承性能退化程度呈正比关系。与基于熵的方法相比,改进的基尺度熵方法具有更快的计算速度和更好的算法稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Degradation Feature Extraction Technique Based on Improved Base-Scale Entropy
In order to track the performance degradation trend accurately, a novel degradation feature extraction technique is proposed based on improved base-scale entropy. A unified base scale is proposed and a new symbol standard is defined to overcome the disadvantages of the base-scale entropy method, so as to symbolize signal amplitude to characterize information amount under different degradation conditions quantitatively. A lifetime dataset of rolling bearing from the IMS Bearing Experiment Center is introduced. For instance, analysis and some entropy-based techniques including fuzzy entropy, approximate entropy and sample entropy are imported for comparison. The results show that the improved basic-scale technique is able to characterize information amount of the signal amplitude distribution, so that the characterizing performance degradation degree of bearing shows a proportional relationship. When comparing the entropy-based techniques, the improved base-scale entropy technique has a faster calculation speed and better algorithm stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信