{"title":"渣结构的聚合程度对碱活化渣粘结剂强度的影响","authors":"P.M. Keeley , N.A. Rowson , T.P. Johnson , D.E. Deegan","doi":"10.1016/j.minpro.2017.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Slags produced as industrial by-products can be used to replace cement by producing alkali-activated slag (AAS) binders. Slags are produced from a variety of high temperature processes and the composition of the slag will change depending on its origin. This paper presents work which investigated the effect of the chemical composition of the slag on its silicate glass network structure and how this affects the performance of the slag during alkali-activation. Several different slag compositions were obtained and Raman spectroscopy was used to determine the silicate structure present in the slags. Mechanical strength testing and dissolution experiments were used to assess the performance of the slags during alkali-activation. The results show that the chemical composition effects the polymerisation of the slag and a decrease in polymerisation of the slag's network structure leads to an increase in the strength of the AAS binder and greater slag reactivity.</p></div>","PeriodicalId":14022,"journal":{"name":"International Journal of Mineral Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.minpro.2017.05.007","citationCount":"25","resultStr":"{\"title\":\"The effect of the extent of polymerisation of a slag structure on the strength of alkali-activated slag binders\",\"authors\":\"P.M. Keeley , N.A. Rowson , T.P. Johnson , D.E. Deegan\",\"doi\":\"10.1016/j.minpro.2017.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Slags produced as industrial by-products can be used to replace cement by producing alkali-activated slag (AAS) binders. Slags are produced from a variety of high temperature processes and the composition of the slag will change depending on its origin. This paper presents work which investigated the effect of the chemical composition of the slag on its silicate glass network structure and how this affects the performance of the slag during alkali-activation. Several different slag compositions were obtained and Raman spectroscopy was used to determine the silicate structure present in the slags. Mechanical strength testing and dissolution experiments were used to assess the performance of the slags during alkali-activation. The results show that the chemical composition effects the polymerisation of the slag and a decrease in polymerisation of the slag's network structure leads to an increase in the strength of the AAS binder and greater slag reactivity.</p></div>\",\"PeriodicalId\":14022,\"journal\":{\"name\":\"International Journal of Mineral Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.minpro.2017.05.007\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mineral Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301751617301096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301751617301096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
The effect of the extent of polymerisation of a slag structure on the strength of alkali-activated slag binders
Slags produced as industrial by-products can be used to replace cement by producing alkali-activated slag (AAS) binders. Slags are produced from a variety of high temperature processes and the composition of the slag will change depending on its origin. This paper presents work which investigated the effect of the chemical composition of the slag on its silicate glass network structure and how this affects the performance of the slag during alkali-activation. Several different slag compositions were obtained and Raman spectroscopy was used to determine the silicate structure present in the slags. Mechanical strength testing and dissolution experiments were used to assess the performance of the slags during alkali-activation. The results show that the chemical composition effects the polymerisation of the slag and a decrease in polymerisation of the slag's network structure leads to an increase in the strength of the AAS binder and greater slag reactivity.
期刊介绍:
International Journal of Mineral Processing has been discontinued as of the end of 2017, due to the merger with Minerals Engineering.
The International Journal of Mineral Processing covers aspects of the processing of mineral resources such as: Metallic and non-metallic ores, coals, and secondary resources. Topics dealt with include: Geometallurgy, comminution, sizing, classification (in air and water), gravity concentration, flotation, electric and magnetic separation, thickening, filtering, drying, and (bio)hydrometallurgy (when applied to low-grade raw materials), control and automation, waste treatment and disposal. In addition to research papers, the journal publishes review articles, technical notes, and letters to the editor..