Hongyou Shan, Jinxia Xu, Yuanhai Jiang, Hongfei Liu, Gang Zheng, Guomin Cui
{"title":"电喷射法在提高水泥砂浆耐久性中的应用","authors":"Hongyou Shan, Jinxia Xu, Yuanhai Jiang, Hongfei Liu, Gang Zheng, Guomin Cui","doi":"10.1680/jmacr.22.00063","DOIUrl":null,"url":null,"abstract":"An electrochemical method for improving durability of cement mortar by injection of nanoparticle (Al2O3 coated SiO2) is presented. In this method, nanoparticles are injected into cement mortar pores under an external electrical field, refining pore structure of cement mortar. The efficiency of electro-injection nano-particle treatment with different applied electric fields was evaluated by monitoring the evolution of cement mortar resistivity. The improvement of cement mortar durability after electro-injection of nano-particle treatment was assessed by examining the resistance to water absorption, carbonation, sulfate resistance and chloride diffusion. The microstructure of cement mortar after the electro-injection treatment was analyzed using Scanning Electron Microscope (SEM), Mercury Intrusion Porosimetry (MIP), X-Ray Diffraction (XRD) and Differential Thermo-Gravimetric Analysis (DTG). The results show that improving cement mortar durability by the injection of nanoparticle under external electric field can be obtained. The efficiency of electro-injection nano-particle treatment increased with the increasing of applied electric field. The resistance to water absorption, carbonation, sulfate attack and chloride diffusion were significantly improved by using the electro-injection method. The improvement in cement mortar durability can be attributed to the filling effect of nanoparticles.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of electro-injection method in improving cement mortar durability\",\"authors\":\"Hongyou Shan, Jinxia Xu, Yuanhai Jiang, Hongfei Liu, Gang Zheng, Guomin Cui\",\"doi\":\"10.1680/jmacr.22.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electrochemical method for improving durability of cement mortar by injection of nanoparticle (Al2O3 coated SiO2) is presented. In this method, nanoparticles are injected into cement mortar pores under an external electrical field, refining pore structure of cement mortar. The efficiency of electro-injection nano-particle treatment with different applied electric fields was evaluated by monitoring the evolution of cement mortar resistivity. The improvement of cement mortar durability after electro-injection of nano-particle treatment was assessed by examining the resistance to water absorption, carbonation, sulfate resistance and chloride diffusion. The microstructure of cement mortar after the electro-injection treatment was analyzed using Scanning Electron Microscope (SEM), Mercury Intrusion Porosimetry (MIP), X-Ray Diffraction (XRD) and Differential Thermo-Gravimetric Analysis (DTG). The results show that improving cement mortar durability by the injection of nanoparticle under external electric field can be obtained. The efficiency of electro-injection nano-particle treatment increased with the increasing of applied electric field. The resistance to water absorption, carbonation, sulfate attack and chloride diffusion were significantly improved by using the electro-injection method. The improvement in cement mortar durability can be attributed to the filling effect of nanoparticles.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.22.00063\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.22.00063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Application of electro-injection method in improving cement mortar durability
An electrochemical method for improving durability of cement mortar by injection of nanoparticle (Al2O3 coated SiO2) is presented. In this method, nanoparticles are injected into cement mortar pores under an external electrical field, refining pore structure of cement mortar. The efficiency of electro-injection nano-particle treatment with different applied electric fields was evaluated by monitoring the evolution of cement mortar resistivity. The improvement of cement mortar durability after electro-injection of nano-particle treatment was assessed by examining the resistance to water absorption, carbonation, sulfate resistance and chloride diffusion. The microstructure of cement mortar after the electro-injection treatment was analyzed using Scanning Electron Microscope (SEM), Mercury Intrusion Porosimetry (MIP), X-Ray Diffraction (XRD) and Differential Thermo-Gravimetric Analysis (DTG). The results show that improving cement mortar durability by the injection of nanoparticle under external electric field can be obtained. The efficiency of electro-injection nano-particle treatment increased with the increasing of applied electric field. The resistance to water absorption, carbonation, sulfate attack and chloride diffusion were significantly improved by using the electro-injection method. The improvement in cement mortar durability can be attributed to the filling effect of nanoparticles.
期刊介绍:
For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed.
Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.