{"title":"离散Jacobi–Sobolev空间中傅立叶级数的收敛性","authors":"Ó. Ciaurri, J. Mínguez Ceniceros, J. Rodríguez","doi":"10.1080/10652469.2023.2182777","DOIUrl":null,"url":null,"abstract":"In this paper, we show a complete characterization of the uniform boundedness of the partial sum operator in a discrete Sobolev space with Jacobi measure. As a consequence, we obtain the convergence of the Fourier series. Moreover it is showed that this Sobolev space is the first category which implies that it is not possible to apply the Banach–Steinhaus theorem.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"703 - 720"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On convergence of Fourier series in discrete Jacobi–Sobolev spaces\",\"authors\":\"Ó. Ciaurri, J. Mínguez Ceniceros, J. Rodríguez\",\"doi\":\"10.1080/10652469.2023.2182777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show a complete characterization of the uniform boundedness of the partial sum operator in a discrete Sobolev space with Jacobi measure. As a consequence, we obtain the convergence of the Fourier series. Moreover it is showed that this Sobolev space is the first category which implies that it is not possible to apply the Banach–Steinhaus theorem.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"703 - 720\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2023.2182777\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2023.2182777","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On convergence of Fourier series in discrete Jacobi–Sobolev spaces
In this paper, we show a complete characterization of the uniform boundedness of the partial sum operator in a discrete Sobolev space with Jacobi measure. As a consequence, we obtain the convergence of the Fourier series. Moreover it is showed that this Sobolev space is the first category which implies that it is not possible to apply the Banach–Steinhaus theorem.
期刊介绍:
Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.