关于Sperner引理和Brouwer定理的二维版本

IF 0.4 Q4 MATHEMATICS
Eugeniusz Barcz
{"title":"关于Sperner引理和Brouwer定理的二维版本","authors":"Eugeniusz Barcz","doi":"10.2478/amsil-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this work the Brouwer fixed point theorem for a triangle was proved by two methods based on the Sperner Lemma. One of the two proofs of Sperner’s Lemma given in the paper was carried out using the so-called index.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"106 - 114"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Two-Dimensional Version of the Sperner Lemma and Brouwer’s Theorem\",\"authors\":\"Eugeniusz Barcz\",\"doi\":\"10.2478/amsil-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work the Brouwer fixed point theorem for a triangle was proved by two methods based on the Sperner Lemma. One of the two proofs of Sperner’s Lemma given in the paper was carried out using the so-called index.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"106 - 114\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在Sperner引理的基础上,用两种方法证明了三角形的Brouwer不动点定理。本文给出的Sperner引理的两个证明之一是用所谓的索引进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Two-Dimensional Version of the Sperner Lemma and Brouwer’s Theorem
Abstract In this work the Brouwer fixed point theorem for a triangle was proved by two methods based on the Sperner Lemma. One of the two proofs of Sperner’s Lemma given in the paper was carried out using the so-called index.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信