{"title":"4流形拓扑、Donaldson-Witten理论、花同调和BV-BFV形式中的高规范理论方法","authors":"Nima Moshayedi","doi":"10.1142/s0129055x22500295","DOIUrl":null,"url":null,"abstract":"We study the behavior of Donaldson's invariants of 4-manifolds based on the moduli space of anti self-dual connections (instantons) in the perturbative field theory setting where the underlying source manifold has boundary. It is well-known that these invariants take values in the instanton Floer homology groups of the boundary 3-manifold. Gluing formulae for these constructions lead to a functorial topological field theory description according to a system of axioms developed by Atiyah, which can be also regarded in the setting of perturbative quantum field theory, as it was shown by Witten, using a version of supersymmetric Yang-Mills theory, known today as Donaldson-Witten theory. One can actually formulate an AKSZ model which recovers this theory for a certain gauge-fixing. We consider these constructions in a perturbative quantum gauge formalism for manifolds with boundary that is compatible with cutting and gluing, called the BV-BFV formalism, which was recently developed by Cattaneo, Mnev and Reshetikhin. We prove that this theory satisfies a modified Quantum Master Equation and extend the result to a global picture when perturbing around constant background fields. Additionally, we relate these constructions to Nekrasov's partition function by treating an equivariant version of Donaldson-Witten theory in the BV formalism. Moreover, we discuss the extension, as well as the relation, to higher gauge theory and enumerative geometry methods, such as Gromov-Witten and Donaldson-Thomas theory and recall their correspondence conjecture for general Calabi-Yau 3-folds. In particular, we discuss the corresponding (relative) partition functions, defined as the generating function for the given invariants, and gluing phenomena.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Manifold Topology, Donaldson–Witten Theory, Floer Homology and Higher Gauge Theory Methods in the BV-BFV Formalism\",\"authors\":\"Nima Moshayedi\",\"doi\":\"10.1142/s0129055x22500295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the behavior of Donaldson's invariants of 4-manifolds based on the moduli space of anti self-dual connections (instantons) in the perturbative field theory setting where the underlying source manifold has boundary. It is well-known that these invariants take values in the instanton Floer homology groups of the boundary 3-manifold. Gluing formulae for these constructions lead to a functorial topological field theory description according to a system of axioms developed by Atiyah, which can be also regarded in the setting of perturbative quantum field theory, as it was shown by Witten, using a version of supersymmetric Yang-Mills theory, known today as Donaldson-Witten theory. One can actually formulate an AKSZ model which recovers this theory for a certain gauge-fixing. We consider these constructions in a perturbative quantum gauge formalism for manifolds with boundary that is compatible with cutting and gluing, called the BV-BFV formalism, which was recently developed by Cattaneo, Mnev and Reshetikhin. We prove that this theory satisfies a modified Quantum Master Equation and extend the result to a global picture when perturbing around constant background fields. Additionally, we relate these constructions to Nekrasov's partition function by treating an equivariant version of Donaldson-Witten theory in the BV formalism. Moreover, we discuss the extension, as well as the relation, to higher gauge theory and enumerative geometry methods, such as Gromov-Witten and Donaldson-Thomas theory and recall their correspondence conjecture for general Calabi-Yau 3-folds. In particular, we discuss the corresponding (relative) partition functions, defined as the generating function for the given invariants, and gluing phenomena.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x22500295\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0129055x22500295","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
4-Manifold Topology, Donaldson–Witten Theory, Floer Homology and Higher Gauge Theory Methods in the BV-BFV Formalism
We study the behavior of Donaldson's invariants of 4-manifolds based on the moduli space of anti self-dual connections (instantons) in the perturbative field theory setting where the underlying source manifold has boundary. It is well-known that these invariants take values in the instanton Floer homology groups of the boundary 3-manifold. Gluing formulae for these constructions lead to a functorial topological field theory description according to a system of axioms developed by Atiyah, which can be also regarded in the setting of perturbative quantum field theory, as it was shown by Witten, using a version of supersymmetric Yang-Mills theory, known today as Donaldson-Witten theory. One can actually formulate an AKSZ model which recovers this theory for a certain gauge-fixing. We consider these constructions in a perturbative quantum gauge formalism for manifolds with boundary that is compatible with cutting and gluing, called the BV-BFV formalism, which was recently developed by Cattaneo, Mnev and Reshetikhin. We prove that this theory satisfies a modified Quantum Master Equation and extend the result to a global picture when perturbing around constant background fields. Additionally, we relate these constructions to Nekrasov's partition function by treating an equivariant version of Donaldson-Witten theory in the BV formalism. Moreover, we discuss the extension, as well as the relation, to higher gauge theory and enumerative geometry methods, such as Gromov-Witten and Donaldson-Thomas theory and recall their correspondence conjecture for general Calabi-Yau 3-folds. In particular, we discuss the corresponding (relative) partition functions, defined as the generating function for the given invariants, and gluing phenomena.
期刊介绍:
Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.