L. Molot, S. Schiff, J. Venkiteswaran, H. Baulch, S. Higgins, A. Zastepa, M. Verschoor, D. Walters
{"title":"低沉积物氧化还原促进蓝藻在营养范围内的繁殖:对管理的影响","authors":"L. Molot, S. Schiff, J. Venkiteswaran, H. Baulch, S. Higgins, A. Zastepa, M. Verschoor, D. Walters","doi":"10.1080/10402381.2020.1854400","DOIUrl":null,"url":null,"abstract":"Abstract Molot LA, Schiff SL, Venkiteswaran JJ, Baulch HM, Higgins SN, Zastepa A, Verschoor MJ, Walters D. 2021. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management. Lake Reserv Manage. 37:120–142. Field observations and experimental manipulations with different oxidizing agents including nitrate demonstrate that high sediment redox prevents cyanobacteria blooms in eutrophic freshwaters. Conversely, low sediment redox caused by depletion of dissolved oxygen and nitrate allows blooms to form. This explains why bloom risk increases with phosphorus levels: Higher productivity increases the spatial and temporal extent of low sediment redox. The intermediate link between low redox and cyanobacteria blooms appears to be internal loading of ferrous iron (Fe2+) from reduced sediments with diffusion to depths accessible to migrating cyanobacteria, providing a source for their high iron demand. Regardless of whether Fe2+ release is the intermediate link, the concept of “low sediment redox as promoter” has major potential to improve bloom management if managers consider the impact of their nutrient management choices, nutrient targets, and in-lake methods on sediment redox. Phosphorus input targets can be adjusted as climate change alters the extent of anoxia, and short-term bloom prediction models that incorporate the sediment redox concept could predict onset of blooms earlier than current models that depend on detection of photosynthetic pigments associated with blooms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2020.1854400","citationCount":"12","resultStr":"{\"title\":\"Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management\",\"authors\":\"L. Molot, S. Schiff, J. Venkiteswaran, H. Baulch, S. Higgins, A. Zastepa, M. Verschoor, D. Walters\",\"doi\":\"10.1080/10402381.2020.1854400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Molot LA, Schiff SL, Venkiteswaran JJ, Baulch HM, Higgins SN, Zastepa A, Verschoor MJ, Walters D. 2021. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management. Lake Reserv Manage. 37:120–142. Field observations and experimental manipulations with different oxidizing agents including nitrate demonstrate that high sediment redox prevents cyanobacteria blooms in eutrophic freshwaters. Conversely, low sediment redox caused by depletion of dissolved oxygen and nitrate allows blooms to form. This explains why bloom risk increases with phosphorus levels: Higher productivity increases the spatial and temporal extent of low sediment redox. The intermediate link between low redox and cyanobacteria blooms appears to be internal loading of ferrous iron (Fe2+) from reduced sediments with diffusion to depths accessible to migrating cyanobacteria, providing a source for their high iron demand. Regardless of whether Fe2+ release is the intermediate link, the concept of “low sediment redox as promoter” has major potential to improve bloom management if managers consider the impact of their nutrient management choices, nutrient targets, and in-lake methods on sediment redox. Phosphorus input targets can be adjusted as climate change alters the extent of anoxia, and short-term bloom prediction models that incorporate the sediment redox concept could predict onset of blooms earlier than current models that depend on detection of photosynthetic pigments associated with blooms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10402381.2020.1854400\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10402381.2020.1854400\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2020.1854400","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management
Abstract Molot LA, Schiff SL, Venkiteswaran JJ, Baulch HM, Higgins SN, Zastepa A, Verschoor MJ, Walters D. 2021. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management. Lake Reserv Manage. 37:120–142. Field observations and experimental manipulations with different oxidizing agents including nitrate demonstrate that high sediment redox prevents cyanobacteria blooms in eutrophic freshwaters. Conversely, low sediment redox caused by depletion of dissolved oxygen and nitrate allows blooms to form. This explains why bloom risk increases with phosphorus levels: Higher productivity increases the spatial and temporal extent of low sediment redox. The intermediate link between low redox and cyanobacteria blooms appears to be internal loading of ferrous iron (Fe2+) from reduced sediments with diffusion to depths accessible to migrating cyanobacteria, providing a source for their high iron demand. Regardless of whether Fe2+ release is the intermediate link, the concept of “low sediment redox as promoter” has major potential to improve bloom management if managers consider the impact of their nutrient management choices, nutrient targets, and in-lake methods on sediment redox. Phosphorus input targets can be adjusted as climate change alters the extent of anoxia, and short-term bloom prediction models that incorporate the sediment redox concept could predict onset of blooms earlier than current models that depend on detection of photosynthetic pigments associated with blooms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.