定性推理和数据挖掘

Time Pub Date : 2019-10-15 DOI:10.4230/LIPIcs.TIME.2019.9
Y. Salhi
{"title":"定性推理和数据挖掘","authors":"Y. Salhi","doi":"10.4230/LIPIcs.TIME.2019.9","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new data mining framework that is based on qualitative reasoning. We consider databases where the item domains are of different types, such as numerical values, time intervals and spatial regions. Then, for the considered tasks, we associate to each item a constraint network in a qualitative formalism representing the relations between all the pairs of objects of the database w.r.t. this item. In this context, the introduced data mining problems consist in discovering qualitative covariations between items. In a sense, our framework can be seen as a generalization of gradual itemset mining. In order to solve the introduced problem, we use a declarative approach based on the satisfiability problem in classical propositional logic (SAT). Indeed, we define SAT encodings where the models represent the desired patterns. 2012 ACM Subject Classification Information systems → Data mining; Information systems → Association rules; Theory of computation → Constraint and logic programming; Computing methodologies → Knowledge representation and reasoning","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"9:1-9:15"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Qualitative Reasoning and Data Mining\",\"authors\":\"Y. Salhi\",\"doi\":\"10.4230/LIPIcs.TIME.2019.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new data mining framework that is based on qualitative reasoning. We consider databases where the item domains are of different types, such as numerical values, time intervals and spatial regions. Then, for the considered tasks, we associate to each item a constraint network in a qualitative formalism representing the relations between all the pairs of objects of the database w.r.t. this item. In this context, the introduced data mining problems consist in discovering qualitative covariations between items. In a sense, our framework can be seen as a generalization of gradual itemset mining. In order to solve the introduced problem, we use a declarative approach based on the satisfiability problem in classical propositional logic (SAT). Indeed, we define SAT encodings where the models represent the desired patterns. 2012 ACM Subject Classification Information systems → Data mining; Information systems → Association rules; Theory of computation → Constraint and logic programming; Computing methodologies → Knowledge representation and reasoning\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"1 1\",\"pages\":\"9:1-9:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2019.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2019.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入了一种新的基于定性推理的数据挖掘框架。我们考虑项目域具有不同类型的数据库,例如数值、时间间隔和空间区域。然后,对于所考虑的任务,我们以一种定性的形式将约束网络与每个项目关联起来,该网络表示与该项目相关的数据库中所有对象对之间的关系。在这种情况下,引入的数据挖掘问题在于发现项目之间的定性协变。从某种意义上说,我们的框架可以看作是渐进式项目集挖掘的概括。为了解决引入的问题,我们使用了基于经典命题逻辑(SAT)中可满足性问题的陈述性方法。实际上,我们定义了SAT编码,其中模型表示所需的模式。2012 ACM主题分类信息系统→数据挖掘;信息系统→关联规则;计算理论→约束与逻辑规划计算方法→知识表示和推理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Reasoning and Data Mining
In this paper, we introduce a new data mining framework that is based on qualitative reasoning. We consider databases where the item domains are of different types, such as numerical values, time intervals and spatial regions. Then, for the considered tasks, we associate to each item a constraint network in a qualitative formalism representing the relations between all the pairs of objects of the database w.r.t. this item. In this context, the introduced data mining problems consist in discovering qualitative covariations between items. In a sense, our framework can be seen as a generalization of gradual itemset mining. In order to solve the introduced problem, we use a declarative approach based on the satisfiability problem in classical propositional logic (SAT). Indeed, we define SAT encodings where the models represent the desired patterns. 2012 ACM Subject Classification Information systems → Data mining; Information systems → Association rules; Theory of computation → Constraint and logic programming; Computing methodologies → Knowledge representation and reasoning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信