S. Nagajothi, S. Elavenil, S. Angalaeswari, L. Natrayan, P. Paramasivam
{"title":"玻璃纤维和玄武岩纤维增强聚合物棒碱活性硅酸铝梁在循环荷载作用下的开裂行为","authors":"S. Nagajothi, S. Elavenil, S. Angalaeswari, L. Natrayan, P. Paramasivam","doi":"10.1155/2022/6762449","DOIUrl":null,"url":null,"abstract":"Cement is an essential material for concrete, which is mostly used worldwide second to the consumption of water. Due to the emission of CO2 into the atmosphere, the alternative material of geopolymer concrete was used. In this research work, silica and alumina content such as ground granulated blast furnace slag (GGBS), fly ash, and triggered by alkali activator solutions were used in geopolymer concrete. Due to the dwindling of river sand, alternative material of manufactured sand (M-Sand) was considered. To avoid corrosion problems in reinforced concrete structures, glass fibre reinforced polymer (GFRP) and basalt fibre-reinforced polymer (BFRP) bars were used as an alternative material for steel reinforcement in this work. As per the code, IS: 10262, the concrete mix design of M30 grade has arrived for the control mix and the same proportion was adopted for geopolymer concrete. Six beams of geopolymer and a concrete control beam of \n \n 100\n ×\n 160\n ×\n 1700\n \n mm were cast and examined under a four-point cyclic load. Cyclic load results were compared with static load under ambient curing. Residual deflection, moment capacity, energy dissipation, and stress–strain behaviour results were compared and discussed. A sudden shear and premature failure were observed in FRP beams under static and cyclic bending tests.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cracking Behaviour of Alkali-Activated Aluminosilicate Beams Reinforced with Glass and Basalt Fibre-Reinforced Polymer Bars under Cyclic Load\",\"authors\":\"S. Nagajothi, S. Elavenil, S. Angalaeswari, L. Natrayan, P. Paramasivam\",\"doi\":\"10.1155/2022/6762449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cement is an essential material for concrete, which is mostly used worldwide second to the consumption of water. Due to the emission of CO2 into the atmosphere, the alternative material of geopolymer concrete was used. In this research work, silica and alumina content such as ground granulated blast furnace slag (GGBS), fly ash, and triggered by alkali activator solutions were used in geopolymer concrete. Due to the dwindling of river sand, alternative material of manufactured sand (M-Sand) was considered. To avoid corrosion problems in reinforced concrete structures, glass fibre reinforced polymer (GFRP) and basalt fibre-reinforced polymer (BFRP) bars were used as an alternative material for steel reinforcement in this work. As per the code, IS: 10262, the concrete mix design of M30 grade has arrived for the control mix and the same proportion was adopted for geopolymer concrete. Six beams of geopolymer and a concrete control beam of \\n \\n 100\\n ×\\n 160\\n ×\\n 1700\\n \\n mm were cast and examined under a four-point cyclic load. Cyclic load results were compared with static load under ambient curing. Residual deflection, moment capacity, energy dissipation, and stress–strain behaviour results were compared and discussed. A sudden shear and premature failure were observed in FRP beams under static and cyclic bending tests.\",\"PeriodicalId\":14283,\"journal\":{\"name\":\"International Journal of Polymer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6762449\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/6762449","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Cracking Behaviour of Alkali-Activated Aluminosilicate Beams Reinforced with Glass and Basalt Fibre-Reinforced Polymer Bars under Cyclic Load
Cement is an essential material for concrete, which is mostly used worldwide second to the consumption of water. Due to the emission of CO2 into the atmosphere, the alternative material of geopolymer concrete was used. In this research work, silica and alumina content such as ground granulated blast furnace slag (GGBS), fly ash, and triggered by alkali activator solutions were used in geopolymer concrete. Due to the dwindling of river sand, alternative material of manufactured sand (M-Sand) was considered. To avoid corrosion problems in reinforced concrete structures, glass fibre reinforced polymer (GFRP) and basalt fibre-reinforced polymer (BFRP) bars were used as an alternative material for steel reinforcement in this work. As per the code, IS: 10262, the concrete mix design of M30 grade has arrived for the control mix and the same proportion was adopted for geopolymer concrete. Six beams of geopolymer and a concrete control beam of
100
×
160
×
1700
mm were cast and examined under a four-point cyclic load. Cyclic load results were compared with static load under ambient curing. Residual deflection, moment capacity, energy dissipation, and stress–strain behaviour results were compared and discussed. A sudden shear and premature failure were observed in FRP beams under static and cyclic bending tests.
期刊介绍:
The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.