不同密度条件下膨润土导水率的估算模型

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science
T. Kijima, Tsuyoshi Sasagawa, T. Sawaguchi, N. Yamada
{"title":"不同密度条件下膨润土导水率的估算模型","authors":"T. Kijima, Tsuyoshi Sasagawa, T. Sawaguchi, N. Yamada","doi":"10.2166/nh.2022.021","DOIUrl":null,"url":null,"abstract":"\n Bentonite is an important material for low-permeability engineering systems used in dams and hazardous waste facilities. While models to characterize the hydraulic conductivity of bentonite have been developed in previous studies, these models were not applicable to various density conditions for Na- and Ca-bentonite. In this study, we present a new model for estimating the hydraulic conductivity of bentonite applicable to a wide range of density conditions for Na- and Ca-bentonite. In order to consider flow paths in compacted bentonite, a lamination structure of montmorillonite stacks was assumed. Our hydraulic model discriminated interlayer pores and other pores by applying a method for estimating the probability of connected pores and hydraulic coefficients governed by the plane Poiseuille flow equation. The model was consistent with the lower part of the experimental data investigated in previous studies on the hydraulic conductivity of Na-bentonite and was in good agreement with the data of Ca-bentonite in the range of an effective montmorillonite density (ρem) at 300 kg/m3 ≤ ρem ≤ 1,400 kg/m3 and 600 kg/m3 ≤ ρem, respectively. However, some experimental values on Ca-bentonite under low-density conditions were far higher than the model results in the case where Ca-bentonite forms flow paths of relatively large pores.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for estimating the hydraulic conductivity of bentonite under various density conditions\",\"authors\":\"T. Kijima, Tsuyoshi Sasagawa, T. Sawaguchi, N. Yamada\",\"doi\":\"10.2166/nh.2022.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Bentonite is an important material for low-permeability engineering systems used in dams and hazardous waste facilities. While models to characterize the hydraulic conductivity of bentonite have been developed in previous studies, these models were not applicable to various density conditions for Na- and Ca-bentonite. In this study, we present a new model for estimating the hydraulic conductivity of bentonite applicable to a wide range of density conditions for Na- and Ca-bentonite. In order to consider flow paths in compacted bentonite, a lamination structure of montmorillonite stacks was assumed. Our hydraulic model discriminated interlayer pores and other pores by applying a method for estimating the probability of connected pores and hydraulic coefficients governed by the plane Poiseuille flow equation. The model was consistent with the lower part of the experimental data investigated in previous studies on the hydraulic conductivity of Na-bentonite and was in good agreement with the data of Ca-bentonite in the range of an effective montmorillonite density (ρem) at 300 kg/m3 ≤ ρem ≤ 1,400 kg/m3 and 600 kg/m3 ≤ ρem, respectively. However, some experimental values on Ca-bentonite under low-density conditions were far higher than the model results in the case where Ca-bentonite forms flow paths of relatively large pores.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2022.021\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2022.021","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

膨润土是用于水坝和危险废物设施的低渗透工程系统的重要材料。虽然在以前的研究中已经开发了表征膨润土导水力的模型,但这些模型不适用于钠和钙膨润土的各种密度条件。在这项研究中,我们提出了一个新的模型来估计膨润土的导水率,该模型适用于钠和钙膨润土在各种密度条件下的导水性。为了考虑压实膨润土中的流动路径,假设了蒙脱石叠层的层状结构。我们的水力模型通过应用一种估计连通孔隙概率的方法和由平面Poiseuille流动方程控制的水力系数来区分层间孔隙和其他孔隙。该模型与之前研究钠基膨润土导水性的实验数据的下部一致,并且在有效蒙脱石密度(ρem)范围内(分别为300kg/m3≤ρem≤1400kg/m3和600kg/m3≤ρem)与钙基膨润岩的数据非常一致。然而,在低密度条件下,Ca膨润土的一些实验值远高于Ca膨润土形成相对大孔隙的流动路径的情况下的模型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model for estimating the hydraulic conductivity of bentonite under various density conditions
Bentonite is an important material for low-permeability engineering systems used in dams and hazardous waste facilities. While models to characterize the hydraulic conductivity of bentonite have been developed in previous studies, these models were not applicable to various density conditions for Na- and Ca-bentonite. In this study, we present a new model for estimating the hydraulic conductivity of bentonite applicable to a wide range of density conditions for Na- and Ca-bentonite. In order to consider flow paths in compacted bentonite, a lamination structure of montmorillonite stacks was assumed. Our hydraulic model discriminated interlayer pores and other pores by applying a method for estimating the probability of connected pores and hydraulic coefficients governed by the plane Poiseuille flow equation. The model was consistent with the lower part of the experimental data investigated in previous studies on the hydraulic conductivity of Na-bentonite and was in good agreement with the data of Ca-bentonite in the range of an effective montmorillonite density (ρem) at 300 kg/m3 ≤ ρem ≤ 1,400 kg/m3 and 600 kg/m3 ≤ ρem, respectively. However, some experimental values on Ca-bentonite under low-density conditions were far higher than the model results in the case where Ca-bentonite forms flow paths of relatively large pores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信