实矩阵和对称矩阵

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tsao-Hsien Chen, D. Nadler
{"title":"实矩阵和对称矩阵","authors":"Tsao-Hsien Chen, D. Nadler","doi":"10.1215/00127094-2022-0076","DOIUrl":null,"url":null,"abstract":"We construct a stratified homeomorphism between the space of $n\\times n$ real matrices with real eigenvalues and the space of $n\\times n$ symmetric matrices with real eigenvalues, which restricts to a real analytic isomorphism between individual $GL_n(\\mathbb R)$-adjoint orbits and $O_n(\\mathbb C)$-adjoint orbits. We also establish similar results in more general settings of Lie algebras of classical types and quiver varieties. To this end, we prove a general result about involutions on hyper-Kahler quotients of linear spaces. We discuss applications to the (generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint orbit closures, and Springer theory for real groups and symmetric spaces.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real and symmetric matrices\",\"authors\":\"Tsao-Hsien Chen, D. Nadler\",\"doi\":\"10.1215/00127094-2022-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a stratified homeomorphism between the space of $n\\\\times n$ real matrices with real eigenvalues and the space of $n\\\\times n$ symmetric matrices with real eigenvalues, which restricts to a real analytic isomorphism between individual $GL_n(\\\\mathbb R)$-adjoint orbits and $O_n(\\\\mathbb C)$-adjoint orbits. We also establish similar results in more general settings of Lie algebras of classical types and quiver varieties. To this end, we prove a general result about involutions on hyper-Kahler quotients of linear spaces. We discuss applications to the (generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint orbit closures, and Springer theory for real groups and symmetric spaces.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了具有实特征值的$n×n$实矩阵的空间和具有实特征量的$n次n$对称矩阵的空间之间的分层同胚,它限制了单个$GL_n(\mathbb R)$-伴随轨道和$O_n(\mathbbC)$-伴轨道之间的实解析同构。在经典型李代数和箭袋变种李代数的更一般的设置中,我们也建立了类似的结果。为此,我们证明了线性空间的超Kahler商上对合的一个一般结果。我们讨论了(广义)Kostant-Sekiguchi对应关系的应用,实和对称伴随轨道闭包的奇点,以及实群和对称空间的Springer理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real and symmetric matrices
We construct a stratified homeomorphism between the space of $n\times n$ real matrices with real eigenvalues and the space of $n\times n$ symmetric matrices with real eigenvalues, which restricts to a real analytic isomorphism between individual $GL_n(\mathbb R)$-adjoint orbits and $O_n(\mathbb C)$-adjoint orbits. We also establish similar results in more general settings of Lie algebras of classical types and quiver varieties. To this end, we prove a general result about involutions on hyper-Kahler quotients of linear spaces. We discuss applications to the (generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint orbit closures, and Springer theory for real groups and symmetric spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信