全纯接触流形上的线和高维$(2,3,5)$分布的推广

Pub Date : 2023-01-30 DOI:10.1017/nmj.2023.3
Jun-Muk Hwang, Qifeng Li
{"title":"全纯接触流形上的线和高维$(2,3,5)$分布的推广","authors":"Jun-Muk Hwang, Qifeng Li","doi":"10.1017/nmj.2023.3","DOIUrl":null,"url":null,"abstract":"Abstract Since the celebrated work by Cartan, distributions with small growth vector \n$(2,3,5)$\n have been studied extensively. In the holomorphic setting, there is a natural correspondence between holomorphic \n$(2,3,5)$\n -distributions and nondegenerate lines on holomorphic contact manifolds of dimension 5. We generalize this correspondence to higher dimensions by studying nondegenerate lines on holomorphic contact manifolds and the corresponding class of distributions of small growth vector \n$(2m, 3m, 3m+2)$\n for any positive integer m.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LINES ON HOLOMORPHIC CONTACT MANIFOLDS AND A GENERALIZATION OF \\n$(2,3,5)$\\n -DISTRIBUTIONS TO HIGHER DIMENSIONS\",\"authors\":\"Jun-Muk Hwang, Qifeng Li\",\"doi\":\"10.1017/nmj.2023.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since the celebrated work by Cartan, distributions with small growth vector \\n$(2,3,5)$\\n have been studied extensively. In the holomorphic setting, there is a natural correspondence between holomorphic \\n$(2,3,5)$\\n -distributions and nondegenerate lines on holomorphic contact manifolds of dimension 5. We generalize this correspondence to higher dimensions by studying nondegenerate lines on holomorphic contact manifolds and the corresponding class of distributions of small growth vector \\n$(2m, 3m, 3m+2)$\\n for any positive integer m.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要自Cartan的著名著作以来,对具有小增长向量$(2,3,5)$的分布进行了广泛的研究。在全纯设置中,全纯$(2,3,5)$-分布与5维全纯接触流形上的非退化线之间存在自然对应关系。我们通过研究全纯接触流形上的非退化线和任何正整数m的小增长向量$(2m,3m,3m+2)$的相应分布类,将这种对应关系推广到更高维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
LINES ON HOLOMORPHIC CONTACT MANIFOLDS AND A GENERALIZATION OF $(2,3,5)$ -DISTRIBUTIONS TO HIGHER DIMENSIONS
Abstract Since the celebrated work by Cartan, distributions with small growth vector $(2,3,5)$ have been studied extensively. In the holomorphic setting, there is a natural correspondence between holomorphic $(2,3,5)$ -distributions and nondegenerate lines on holomorphic contact manifolds of dimension 5. We generalize this correspondence to higher dimensions by studying nondegenerate lines on holomorphic contact manifolds and the corresponding class of distributions of small growth vector $(2m, 3m, 3m+2)$ for any positive integer m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信