Farlie–Gumbel–Morgenstern双变量矩指数分布及其基于阶统计量的推论

Pub Date : 2023-02-03 DOI:10.3390/stats6010015
S. P. Arun, C. Chesneau, R. Maya, M. Irshad
{"title":"Farlie–Gumbel–Morgenstern双变量矩指数分布及其基于阶统计量的推论","authors":"S. P. Arun, C. Chesneau, R. Maya, M. Irshad","doi":"10.3390/stats6010015","DOIUrl":null,"url":null,"abstract":"In this research, we design the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, a bivariate analogue of the moment exponential distribution, using the Farlie–Gumbel–Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution in comparison with the other Farlie–Gumbel–Morgenstern distributions is discussed. Based on the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, we develop the distribution theory of concomitants of order statistics and derive the best linear unbiased estimator of the parameter associated with the variable of primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally, empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator are performed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics\",\"authors\":\"S. P. Arun, C. Chesneau, R. Maya, M. Irshad\",\"doi\":\"10.3390/stats6010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we design the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, a bivariate analogue of the moment exponential distribution, using the Farlie–Gumbel–Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution in comparison with the other Farlie–Gumbel–Morgenstern distributions is discussed. Based on the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, we develop the distribution theory of concomitants of order statistics and derive the best linear unbiased estimator of the parameter associated with the variable of primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally, empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator are performed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们使用Farlie–Gumbel–Morgenstern方法设计了Farlie–Gumbel–Morgenstern双变量矩指数分布,这是矩指数分布的一种双变量模拟。通过对真实数据的分析,讨论了Farlie–Gumbel–Morgenstern双变量矩指数分布与其他Farlie–Gumbel–Morgenstern分布相比的竞争力。基于Farlie–Gumbel–Morgenstern双变量矩指数分布,我们发展了阶统计量伴随项的分布理论,并导出了与主要关注变量(研究变量)相关的参数的最佳线性无偏估计量。还进行了关于最佳线性无偏估计器相对于相应无偏估计器的效率比较的评估。此外,还对最佳线性无偏估计器相对于无偏估计量进行了实证说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics
In this research, we design the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, a bivariate analogue of the moment exponential distribution, using the Farlie–Gumbel–Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution in comparison with the other Farlie–Gumbel–Morgenstern distributions is discussed. Based on the Farlie–Gumbel–Morgenstern bivariate moment exponential distribution, we develop the distribution theory of concomitants of order statistics and derive the best linear unbiased estimator of the parameter associated with the variable of primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally, empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信