{"title":"磁性Schrödinger算子逆问题的包体法缺陷重构","authors":"K. Kurata, Ryusei Yamashita","doi":"10.3836/tjm/1502179363","DOIUrl":null,"url":null,"abstract":"This study is based on the paper [1]. We give the formula to extract the position and the shape of the defect D generated in the object (conductor) Ω from the observation data on the boundary ∂Ω for the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case. Let Ω ⊂ R(n = 2, 3) be a bounded domain where the boundary ∂Ω is C and let D be an open set satisfying D ⊂ Ω and Ω \\ D is connected. The defect D consists of the union of disjoint bounded domains {Dj}j=1, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω. Here, let D Au := ∑n j=1 DA,j(DA,ju), where DA,j := 1 i ∂j +Aj and A = (A1, A2, · · · , An). Definition 1. Suppose q ∈ L∞(Ω), q ≥ 0, A ∈ C(Ω, R). For a given f ∈ H(∂Ω), we say u ∈ H(Ω) is a weak solution to the following boundary value problem for the magnetic Schrödinger equation { D Au+ qu = 0 in Ω, u = f on ∂Ω, (1.1)","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstruction of the Defect by the Enclosure Method for Inverse Problems of the Magnetic Schrödinger Operator\",\"authors\":\"K. Kurata, Ryusei Yamashita\",\"doi\":\"10.3836/tjm/1502179363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is based on the paper [1]. We give the formula to extract the position and the shape of the defect D generated in the object (conductor) Ω from the observation data on the boundary ∂Ω for the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case. Let Ω ⊂ R(n = 2, 3) be a bounded domain where the boundary ∂Ω is C and let D be an open set satisfying D ⊂ Ω and Ω \\\\ D is connected. The defect D consists of the union of disjoint bounded domains {Dj}j=1, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω. Here, let D Au := ∑n j=1 DA,j(DA,ju), where DA,j := 1 i ∂j +Aj and A = (A1, A2, · · · , An). Definition 1. Suppose q ∈ L∞(Ω), q ≥ 0, A ∈ C(Ω, R). For a given f ∈ H(∂Ω), we say u ∈ H(Ω) is a weak solution to the following boundary value problem for the magnetic Schrödinger equation { D Au+ qu = 0 in Ω, u = f on ∂Ω, (1.1)\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconstruction of the Defect by the Enclosure Method for Inverse Problems of the Magnetic Schrödinger Operator
This study is based on the paper [1]. We give the formula to extract the position and the shape of the defect D generated in the object (conductor) Ω from the observation data on the boundary ∂Ω for the magnetic Schrödinger operator by using the enclosure method proposed by Ikehata [2]. We show a reconstruction formula of the convex hull of the defect D from the observed data, assuming certain higher regularity for the potentials of the magnetic Schrödinger operator, under the Dirichlet condition or the Robin condition on the boundary ∂D in the two and three dimensional case. Let Ω ⊂ R(n = 2, 3) be a bounded domain where the boundary ∂Ω is C and let D be an open set satisfying D ⊂ Ω and Ω \ D is connected. The defect D consists of the union of disjoint bounded domains {Dj}j=1, where the boundary of D is Lipschitz continuous. First, we define the DN map for the magnetic Schrödinger equation with no defect D in Ω. Here, let D Au := ∑n j=1 DA,j(DA,ju), where DA,j := 1 i ∂j +Aj and A = (A1, A2, · · · , An). Definition 1. Suppose q ∈ L∞(Ω), q ≥ 0, A ∈ C(Ω, R). For a given f ∈ H(∂Ω), we say u ∈ H(Ω) is a weak solution to the following boundary value problem for the magnetic Schrödinger equation { D Au+ qu = 0 in Ω, u = f on ∂Ω, (1.1)