{"title":"径向临界波方程在所有奇空间维度上的孤立子分辨率","authors":"Thomas Duyckaerts, C. Kenig, F. Merle","doi":"10.4310/acta.2023.v230.n1.a1","DOIUrl":null,"url":null,"abstract":"Consider the energy-critical focusing wave equation in odd space dimension $N\\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. \nThe proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Soliton resolution for the radial critical wave equation in all odd space dimensions\",\"authors\":\"Thomas Duyckaerts, C. Kenig, F. Merle\",\"doi\":\"10.4310/acta.2023.v230.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the energy-critical focusing wave equation in odd space dimension $N\\\\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. \\nThe proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2023.v230.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v230.n1.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Soliton resolution for the radial critical wave equation in all odd space dimensions
Consider the energy-critical focusing wave equation in odd space dimension $N\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term.
The proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.