径向临界波方程在所有奇空间维度上的孤立子分辨率

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Thomas Duyckaerts, C. Kenig, F. Merle
{"title":"径向临界波方程在所有奇空间维度上的孤立子分辨率","authors":"Thomas Duyckaerts, C. Kenig, F. Merle","doi":"10.4310/acta.2023.v230.n1.a1","DOIUrl":null,"url":null,"abstract":"Consider the energy-critical focusing wave equation in odd space dimension $N\\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. \nThe proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Soliton resolution for the radial critical wave equation in all odd space dimensions\",\"authors\":\"Thomas Duyckaerts, C. Kenig, F. Merle\",\"doi\":\"10.4310/acta.2023.v230.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the energy-critical focusing wave equation in odd space dimension $N\\\\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. \\nThe proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2019-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2023.v230.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2023.v230.n1.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 15

摘要

考虑奇空间维的能量临界聚焦波动方程$N\geq 3$。该方程有一个非零径向稳态解$W$,它在缩放和符号变化方面都是独一无二的。在本文中,我们证明了在方程的能量范数解中有界的任何径向,其渐近表现为被尺度解耦的调制$W$ s和辐射项。这个证明本质上归结为一个事实,即这个方程没有纯粹的非辐射多孤子解。该证明克服了扩展三维情况的基本障碍(在我们之前的工作中处理过,剑桥数学杂志2013,arXiv:1204.0031),通过减少对调制参数的有限维常微分方程系统的多孤子解的研究。这个证明的关键是证明这个方程组产生了一些辐射,与纯多孤子的存在相矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton resolution for the radial critical wave equation in all odd space dimensions
Consider the energy-critical focusing wave equation in odd space dimension $N\geq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. The proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信