A. Käßner, H. T. Kalapurakkal, B. Huber, M. Tichomirowa
{"title":"德国中部和东北部水基87Sr/86Sr等高线新图——以山区为重点","authors":"A. Käßner, H. T. Kalapurakkal, B. Huber, M. Tichomirowa","doi":"10.1007/s10498-023-09412-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a new <sup>87</sup>Sr/<sup>86</sup>Sr isoscape map of Central and NE Germany. This area is characterized by an alternation of sedimentary basins and mountainous regions with a very variable lithology. Since lithology and rock age have a major impact on the isotopic composition of biologically available strontium, Central and NE Germany should reveal highly variable <sup>87</sup>Sr/<sup>86</sup>Sr ratios. From lithological characteristics, particularly high ratios are expected in the mountainous regions of the Erzgebirge/Fichtelgebirge and the Harz Mountains. In contrast to these predictions, published <sup>87</sup>Sr/<sup>86</sup>Sr isoscape maps of Central and NE Germany record rather uniform and low <sup>87</sup>Sr/<sup>86</sup>Sr ratios. From this observation, we suspected that existing isoscape maps might be computed from an insufficient database, with mountainous regions being underrepresented. Our goal was to gather <sup>87</sup>Sr/<sup>86</sup>Sr baselines for each major lithology of Central and NE Germany and to produce an accurate isoscape map of Central and NE Germany. In the first step, we evaluated the suitability of stream water and groundwater as a proxy for biologically available strontium. In a selected watershed, we present mixing relationships and a stream network model. We show that groundwater is prone to very local geologic and anthropogenic influences and should thus be avoided. Instead, we focussed our further sampling on stream water. Altogether, we used 119 new measurements of groundwater and stream water and a set of 23 auxiliary variables as a database for our new isoscape map of Central and NE Germany. Due to a sampling strategy that focussed on covering each major lithology, our measurements and the final isoscape map show a clear contrast between sedimentary basins and mountainous regions. For regions that have been sufficiently sampled, a direct comparison of the isoscape map with published and new data shows good agreement. Although Central and NE Germany were part of published isoscape maps, our new map is the first that predicts <sup>87</sup>Sr/<sup>86</sup>Sr ratios in mountainous regions with high accuracy.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"29 2","pages":"95 - 125"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10498-023-09412-5.pdf","citationCount":"1","resultStr":"{\"title\":\"A New Water-Based 87Sr/86Sr Isoscape Map of Central and NE Germany, with Special Emphasis on Mountainous Regions\",\"authors\":\"A. Käßner, H. T. Kalapurakkal, B. Huber, M. Tichomirowa\",\"doi\":\"10.1007/s10498-023-09412-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a new <sup>87</sup>Sr/<sup>86</sup>Sr isoscape map of Central and NE Germany. This area is characterized by an alternation of sedimentary basins and mountainous regions with a very variable lithology. Since lithology and rock age have a major impact on the isotopic composition of biologically available strontium, Central and NE Germany should reveal highly variable <sup>87</sup>Sr/<sup>86</sup>Sr ratios. From lithological characteristics, particularly high ratios are expected in the mountainous regions of the Erzgebirge/Fichtelgebirge and the Harz Mountains. In contrast to these predictions, published <sup>87</sup>Sr/<sup>86</sup>Sr isoscape maps of Central and NE Germany record rather uniform and low <sup>87</sup>Sr/<sup>86</sup>Sr ratios. From this observation, we suspected that existing isoscape maps might be computed from an insufficient database, with mountainous regions being underrepresented. Our goal was to gather <sup>87</sup>Sr/<sup>86</sup>Sr baselines for each major lithology of Central and NE Germany and to produce an accurate isoscape map of Central and NE Germany. In the first step, we evaluated the suitability of stream water and groundwater as a proxy for biologically available strontium. In a selected watershed, we present mixing relationships and a stream network model. We show that groundwater is prone to very local geologic and anthropogenic influences and should thus be avoided. Instead, we focussed our further sampling on stream water. Altogether, we used 119 new measurements of groundwater and stream water and a set of 23 auxiliary variables as a database for our new isoscape map of Central and NE Germany. Due to a sampling strategy that focussed on covering each major lithology, our measurements and the final isoscape map show a clear contrast between sedimentary basins and mountainous regions. For regions that have been sufficiently sampled, a direct comparison of the isoscape map with published and new data shows good agreement. Although Central and NE Germany were part of published isoscape maps, our new map is the first that predicts <sup>87</sup>Sr/<sup>86</sup>Sr ratios in mountainous regions with high accuracy.</p></div>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"29 2\",\"pages\":\"95 - 125\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10498-023-09412-5.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-023-09412-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-023-09412-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A New Water-Based 87Sr/86Sr Isoscape Map of Central and NE Germany, with Special Emphasis on Mountainous Regions
In this study, we present a new 87Sr/86Sr isoscape map of Central and NE Germany. This area is characterized by an alternation of sedimentary basins and mountainous regions with a very variable lithology. Since lithology and rock age have a major impact on the isotopic composition of biologically available strontium, Central and NE Germany should reveal highly variable 87Sr/86Sr ratios. From lithological characteristics, particularly high ratios are expected in the mountainous regions of the Erzgebirge/Fichtelgebirge and the Harz Mountains. In contrast to these predictions, published 87Sr/86Sr isoscape maps of Central and NE Germany record rather uniform and low 87Sr/86Sr ratios. From this observation, we suspected that existing isoscape maps might be computed from an insufficient database, with mountainous regions being underrepresented. Our goal was to gather 87Sr/86Sr baselines for each major lithology of Central and NE Germany and to produce an accurate isoscape map of Central and NE Germany. In the first step, we evaluated the suitability of stream water and groundwater as a proxy for biologically available strontium. In a selected watershed, we present mixing relationships and a stream network model. We show that groundwater is prone to very local geologic and anthropogenic influences and should thus be avoided. Instead, we focussed our further sampling on stream water. Altogether, we used 119 new measurements of groundwater and stream water and a set of 23 auxiliary variables as a database for our new isoscape map of Central and NE Germany. Due to a sampling strategy that focussed on covering each major lithology, our measurements and the final isoscape map show a clear contrast between sedimentary basins and mountainous regions. For regions that have been sufficiently sampled, a direct comparison of the isoscape map with published and new data shows good agreement. Although Central and NE Germany were part of published isoscape maps, our new map is the first that predicts 87Sr/86Sr ratios in mountainous regions with high accuracy.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.