{"title":"关于有边界流形上Obata方程的一个注记","authors":"Mijia Lai null, Hui Zhou","doi":"10.4208/jms.v55n3.22.02","DOIUrl":null,"url":null,"abstract":". We analyze complete manifolds with boundary which admit solutions to Obata type equations ∇ 2 f − f g = 0 and ∇ 2 f = g under various boundary conditions. Given the existence of interior critical points, such manifolds are domains in the hyperbolic space and the Euclidean space respectively.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Obata Equations on Manifolds with Boundary\",\"authors\":\"Mijia Lai null, Hui Zhou\",\"doi\":\"10.4208/jms.v55n3.22.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We analyze complete manifolds with boundary which admit solutions to Obata type equations ∇ 2 f − f g = 0 and ∇ 2 f = g under various boundary conditions. Given the existence of interior critical points, such manifolds are domains in the hyperbolic space and the Euclidean space respectively.\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v55n3.22.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v55n3.22.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 我们分析了在不同边界条件下Obata型方程∇2f−f g = 0和∇2f = g有边界的完全流形。在给定内临界点存在的情况下,这种流形分别是双曲空间和欧几里德空间中的域。
A Note on Obata Equations on Manifolds with Boundary
. We analyze complete manifolds with boundary which admit solutions to Obata type equations ∇ 2 f − f g = 0 and ∇ 2 f = g under various boundary conditions. Given the existence of interior critical points, such manifolds are domains in the hyperbolic space and the Euclidean space respectively.