Coneat内射模

IF 0.4 Q4 MATHEMATICS
M. Hamid
{"title":"Coneat内射模","authors":"M. Hamid","doi":"10.35834/2019/3102201","DOIUrl":null,"url":null,"abstract":"A module is called coneat injective if it is injective with respect to all coneat exact sequences. The class of such modues is enveloping and falls properly between injectives and pure injectives. Generalizations of coneat injectivity, like relative coneat injectivity and full invariance of a module in its coneat injective envelope, are studied. Using properties of such classes of modules, we characterize certain types of rings like von Neumann regular and right SF-rings. For instance, R is a right SF-ring if and only if every coneat injective left R-module is injective.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coneat Injective Modules\",\"authors\":\"M. Hamid\",\"doi\":\"10.35834/2019/3102201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module is called coneat injective if it is injective with respect to all coneat exact sequences. The class of such modues is enveloping and falls properly between injectives and pure injectives. Generalizations of coneat injectivity, like relative coneat injectivity and full invariance of a module in its coneat injective envelope, are studied. Using properties of such classes of modules, we characterize certain types of rings like von Neumann regular and right SF-rings. For instance, R is a right SF-ring if and only if every coneat injective left R-module is injective.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/2019/3102201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2019/3102201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

如果一个模对所有的紧密精确序列都是内射的,那么它就被称为紧密内射。这类模是包络性的,适当地落在注入模和纯注入模之间。研究了模的广义注入性,如模的相对注入性和模在其注入包络内的完全不变性。利用这类模的性质,我们刻画了某些类型的环,如von Neumann正则环和右sf环。例如,R是一个右sf环当且仅当每个内射左R模都是内射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coneat Injective Modules
A module is called coneat injective if it is injective with respect to all coneat exact sequences. The class of such modues is enveloping and falls properly between injectives and pure injectives. Generalizations of coneat injectivity, like relative coneat injectivity and full invariance of a module in its coneat injective envelope, are studied. Using properties of such classes of modules, we characterize certain types of rings like von Neumann regular and right SF-rings. For instance, R is a right SF-ring if and only if every coneat injective left R-module is injective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信