{"title":"抽象NBTI模型","authors":"Stephan Adolf, W. Nebel","doi":"10.1515/itit-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract Negative Bias Temperature Instability (NBTI) is one of the major transistor aging effects, possibly leading to timing failures during run-time of a system. Thus one is interested in predicting this effect during design time. In this work an Abstraction NBTI model is introduced reducing the state space of trap-based NBTI models using two abstraction parameters, applying a state transformation to incorporate variable stress conditions. This transformation is faster than traditional approaches. Currently the conversion into estimated threshold voltage damages is a very time consuming process.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstraction NBTI model\",\"authors\":\"Stephan Adolf, W. Nebel\",\"doi\":\"10.1515/itit-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Negative Bias Temperature Instability (NBTI) is one of the major transistor aging effects, possibly leading to timing failures during run-time of a system. Thus one is interested in predicting this effect during design time. In this work an Abstraction NBTI model is introduced reducing the state space of trap-based NBTI models using two abstraction parameters, applying a state transformation to incorporate variable stress conditions. This transformation is faster than traditional approaches. Currently the conversion into estimated threshold voltage damages is a very time consuming process.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Abstract Negative Bias Temperature Instability (NBTI) is one of the major transistor aging effects, possibly leading to timing failures during run-time of a system. Thus one is interested in predicting this effect during design time. In this work an Abstraction NBTI model is introduced reducing the state space of trap-based NBTI models using two abstraction parameters, applying a state transformation to incorporate variable stress conditions. This transformation is faster than traditional approaches. Currently the conversion into estimated threshold voltage damages is a very time consuming process.