{"title":"基于齐次优势技术的p范数随机非线性系统的规定时间镇定控制","authors":"Mengqing Cheng, Junsheng Zhao, Zong-yao Sun, Guangming Zhuang","doi":"10.1177/01423312231182469","DOIUrl":null,"url":null,"abstract":"In this article, a prescribed-time state-feedback stabilization design strategy is proposed for a class of p-norm stochastic nonlinear strict feedback systems. In previous work on prescribed-time stabilization of stochastic systems, only stochastic nonlinear systems with fractional power less than or equal to one are considered. To overcome this problem, we improve the existing method and discuss the issue of prescribed-time stabilization of stochastic nonlinear systems with fractional power is arbitrary positive odd rational number. First, a prescribed-time controller is designed by combining the Lyapunov function with adding a power integrator technique. It should be pointed out that the homogeneous domination approach is adopted when dealing with the nonlinear terms of the system. Then, according to the stochastic prescribed-time stability theorem, it is proved that the designed controller can ensure the closed-loop system is prescribed-time mean-square stable. Finally, three simulation examples are given to investigate the validity of the presented method, in which the last one is an electromechanical system example.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed-time stabilization control for p-norm stochastic nonlinear systems based on homogeneous dominant technique\",\"authors\":\"Mengqing Cheng, Junsheng Zhao, Zong-yao Sun, Guangming Zhuang\",\"doi\":\"10.1177/01423312231182469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a prescribed-time state-feedback stabilization design strategy is proposed for a class of p-norm stochastic nonlinear strict feedback systems. In previous work on prescribed-time stabilization of stochastic systems, only stochastic nonlinear systems with fractional power less than or equal to one are considered. To overcome this problem, we improve the existing method and discuss the issue of prescribed-time stabilization of stochastic nonlinear systems with fractional power is arbitrary positive odd rational number. First, a prescribed-time controller is designed by combining the Lyapunov function with adding a power integrator technique. It should be pointed out that the homogeneous domination approach is adopted when dealing with the nonlinear terms of the system. Then, according to the stochastic prescribed-time stability theorem, it is proved that the designed controller can ensure the closed-loop system is prescribed-time mean-square stable. Finally, three simulation examples are given to investigate the validity of the presented method, in which the last one is an electromechanical system example.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231182469\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231182469","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Prescribed-time stabilization control for p-norm stochastic nonlinear systems based on homogeneous dominant technique
In this article, a prescribed-time state-feedback stabilization design strategy is proposed for a class of p-norm stochastic nonlinear strict feedback systems. In previous work on prescribed-time stabilization of stochastic systems, only stochastic nonlinear systems with fractional power less than or equal to one are considered. To overcome this problem, we improve the existing method and discuss the issue of prescribed-time stabilization of stochastic nonlinear systems with fractional power is arbitrary positive odd rational number. First, a prescribed-time controller is designed by combining the Lyapunov function with adding a power integrator technique. It should be pointed out that the homogeneous domination approach is adopted when dealing with the nonlinear terms of the system. Then, according to the stochastic prescribed-time stability theorem, it is proved that the designed controller can ensure the closed-loop system is prescribed-time mean-square stable. Finally, three simulation examples are given to investigate the validity of the presented method, in which the last one is an electromechanical system example.
期刊介绍:
Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.