{"title":"不同波长混合激光束辐照对快速电子生成的影响","authors":"Masayasu Hata, Yasunobu Arikawa, Hideo Nagatomo, Yasuhiko Sentoku","doi":"10.1016/j.hedp.2020.100918","DOIUrl":null,"url":null,"abstract":"<div><p>In fast ignition laser fusion, a high-intensity picosecond laser heats a compressed dense core to achieve ignition. It is theoretically expected that the energy coupling efficiency from the heating laser to the compressed core becomes higher as the wavelength of the heating laser is shorter. This prediction is ready to be experimentally demonstrated using second harmonic generation at Institute of Laser Engineering (ILE), Osaka University. Fundamental and converted second harmonic waves irradiate a target simultaneously in the experiment because crystals for wavelength conversion is installed after a final optical system. In addition, the polarization of the second harmonic wave becomes perpendicular to the original fundamental wave after the wavelength conversion. These features make laser-plasma-interactions complicated. Therefore, three-dimensional particle-in-cell simulations have been conducted to investigate effects of conversion to short wavelength and mixed-beam irradiation with different wavelengths. Simulation results show that the temperature of the generated fast electrons decreases for second harmonic conversion compared to the case of pure fundamental wave and the laser propagates deeper as the wavelength conversion efficiency becomes high. In the case of mixed-beam irradiation, it is found that the second harmonic wave drills the plasma and guides the fundamental wave to the deep region, where pure fundamental wave cannot reach.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"38 ","pages":"Article 100918"},"PeriodicalIF":1.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hedp.2020.100918","citationCount":"0","resultStr":"{\"title\":\"Effects of mixed laser beam irradiation with different wavelengths on fast electron generation\",\"authors\":\"Masayasu Hata, Yasunobu Arikawa, Hideo Nagatomo, Yasuhiko Sentoku\",\"doi\":\"10.1016/j.hedp.2020.100918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In fast ignition laser fusion, a high-intensity picosecond laser heats a compressed dense core to achieve ignition. It is theoretically expected that the energy coupling efficiency from the heating laser to the compressed core becomes higher as the wavelength of the heating laser is shorter. This prediction is ready to be experimentally demonstrated using second harmonic generation at Institute of Laser Engineering (ILE), Osaka University. Fundamental and converted second harmonic waves irradiate a target simultaneously in the experiment because crystals for wavelength conversion is installed after a final optical system. In addition, the polarization of the second harmonic wave becomes perpendicular to the original fundamental wave after the wavelength conversion. These features make laser-plasma-interactions complicated. Therefore, three-dimensional particle-in-cell simulations have been conducted to investigate effects of conversion to short wavelength and mixed-beam irradiation with different wavelengths. Simulation results show that the temperature of the generated fast electrons decreases for second harmonic conversion compared to the case of pure fundamental wave and the laser propagates deeper as the wavelength conversion efficiency becomes high. In the case of mixed-beam irradiation, it is found that the second harmonic wave drills the plasma and guides the fundamental wave to the deep region, where pure fundamental wave cannot reach.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"38 \",\"pages\":\"Article 100918\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hedp.2020.100918\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181820301415\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181820301415","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Effects of mixed laser beam irradiation with different wavelengths on fast electron generation
In fast ignition laser fusion, a high-intensity picosecond laser heats a compressed dense core to achieve ignition. It is theoretically expected that the energy coupling efficiency from the heating laser to the compressed core becomes higher as the wavelength of the heating laser is shorter. This prediction is ready to be experimentally demonstrated using second harmonic generation at Institute of Laser Engineering (ILE), Osaka University. Fundamental and converted second harmonic waves irradiate a target simultaneously in the experiment because crystals for wavelength conversion is installed after a final optical system. In addition, the polarization of the second harmonic wave becomes perpendicular to the original fundamental wave after the wavelength conversion. These features make laser-plasma-interactions complicated. Therefore, three-dimensional particle-in-cell simulations have been conducted to investigate effects of conversion to short wavelength and mixed-beam irradiation with different wavelengths. Simulation results show that the temperature of the generated fast electrons decreases for second harmonic conversion compared to the case of pure fundamental wave and the laser propagates deeper as the wavelength conversion efficiency becomes high. In the case of mixed-beam irradiation, it is found that the second harmonic wave drills the plasma and guides the fundamental wave to the deep region, where pure fundamental wave cannot reach.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.