{"title":"重新审视Panjer类:Panjer(a,b,n)类分布的一个公式","authors":"Michael Fackler","doi":"10.2139/ssrn.3813246","DOIUrl":null,"url":null,"abstract":"Abstract The loss count distributions whose probabilities ultimately satisfy Panjer’s recursion were classified between 1981 and 2002; they split into six types, which look quite diverse. Yet, the distributions are closely related – we show that their probabilities emerge out of one formula: the binomial series. We propose a parameter change that leads to a unified, practical and intuitive, representation of the Panjer distributions and their parameter space. We determine the subsets of the parameter space where the probabilities are continuous functions of the parameters. Finally, we give an inventory of parameterisations used for Panjer distributions.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panjer class revisited: one formula for the distributions of the Panjer (a,b,n) class\",\"authors\":\"Michael Fackler\",\"doi\":\"10.2139/ssrn.3813246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The loss count distributions whose probabilities ultimately satisfy Panjer’s recursion were classified between 1981 and 2002; they split into six types, which look quite diverse. Yet, the distributions are closely related – we show that their probabilities emerge out of one formula: the binomial series. We propose a parameter change that leads to a unified, practical and intuitive, representation of the Panjer distributions and their parameter space. We determine the subsets of the parameter space where the probabilities are continuous functions of the parameters. Finally, we give an inventory of parameterisations used for Panjer distributions.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3813246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3813246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Panjer class revisited: one formula for the distributions of the Panjer (a,b,n) class
Abstract The loss count distributions whose probabilities ultimately satisfy Panjer’s recursion were classified between 1981 and 2002; they split into six types, which look quite diverse. Yet, the distributions are closely related – we show that their probabilities emerge out of one formula: the binomial series. We propose a parameter change that leads to a unified, practical and intuitive, representation of the Panjer distributions and their parameter space. We determine the subsets of the parameter space where the probabilities are continuous functions of the parameters. Finally, we give an inventory of parameterisations used for Panjer distributions.