基于径向基函数网络的RGB图像光谱重建优化

Q4 Social Sciences
Meta: Avaliacao Pub Date : 2023-08-11 DOI:10.1117/12.2687949
Long Ma, Zhipeng Qian
{"title":"基于径向基函数网络的RGB图像光谱重建优化","authors":"Long Ma, Zhipeng Qian","doi":"10.1117/12.2687949","DOIUrl":null,"url":null,"abstract":"The Spectral Reconstruction (SR) algorithm attempts to recover hyperspectral information from RGB camera responses. This estimation problem is usually formulated as a least squares regression, and because the data is noisy, Tikhonov regularization is reconsidered. The degree of regularization is controlled by a single penalty parameter. This paper improves the traditional cross validation experiment method for the optimization of this parameter. In addition, this article also proposes an improved SR model. Unlike common SR models, our method divides the processed RGB space into different numbers of neighborhoods and determines the center point of each neighborhood. Finally, the adjacent RGB data and spectral data of each center point are used as input and output data for the Radial Basis Function Network (RBFN) model to train the SR regression of each RGB neighborhood. This article selects MRAE and RMSE to evaluate the performance of the SR algorithm. Through comparison with different SR models, the methods proposed in this article have significant performance improvements.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"12785 1","pages":"1278507 - 1278507-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of RGB image spectral reconstruction based on radial basis function networks\",\"authors\":\"Long Ma, Zhipeng Qian\",\"doi\":\"10.1117/12.2687949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Spectral Reconstruction (SR) algorithm attempts to recover hyperspectral information from RGB camera responses. This estimation problem is usually formulated as a least squares regression, and because the data is noisy, Tikhonov regularization is reconsidered. The degree of regularization is controlled by a single penalty parameter. This paper improves the traditional cross validation experiment method for the optimization of this parameter. In addition, this article also proposes an improved SR model. Unlike common SR models, our method divides the processed RGB space into different numbers of neighborhoods and determines the center point of each neighborhood. Finally, the adjacent RGB data and spectral data of each center point are used as input and output data for the Radial Basis Function Network (RBFN) model to train the SR regression of each RGB neighborhood. This article selects MRAE and RMSE to evaluate the performance of the SR algorithm. Through comparison with different SR models, the methods proposed in this article have significant performance improvements.\",\"PeriodicalId\":38836,\"journal\":{\"name\":\"Meta: Avaliacao\",\"volume\":\"12785 1\",\"pages\":\"1278507 - 1278507-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta: Avaliacao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2687949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2687949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

光谱重建(SR)算法试图从RGB相机响应中恢复高光谱信息。这种估计问题通常被表述为最小二乘回归,由于数据是有噪声的,Tikhonov正则化被重新考虑。正则化程度由单个惩罚参数控制。本文改进了传统的交叉验证实验方法,对该参数进行了优化。此外,本文还提出了一种改进的SR模型。与普通的SR模型不同,我们的方法将处理后的RGB空间划分为不同数量的邻域,并确定每个邻域的中心点。最后,将每个中心点的相邻RGB数据和光谱数据作为径向基函数网络(RBFN)模型的输入和输出数据,训练每个RGB邻域的SR回归。本文选取MRAE和RMSE来评价SR算法的性能。通过与不同SR模型的比较,本文提出的方法具有显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of RGB image spectral reconstruction based on radial basis function networks
The Spectral Reconstruction (SR) algorithm attempts to recover hyperspectral information from RGB camera responses. This estimation problem is usually formulated as a least squares regression, and because the data is noisy, Tikhonov regularization is reconsidered. The degree of regularization is controlled by a single penalty parameter. This paper improves the traditional cross validation experiment method for the optimization of this parameter. In addition, this article also proposes an improved SR model. Unlike common SR models, our method divides the processed RGB space into different numbers of neighborhoods and determines the center point of each neighborhood. Finally, the adjacent RGB data and spectral data of each center point are used as input and output data for the Radial Basis Function Network (RBFN) model to train the SR regression of each RGB neighborhood. This article selects MRAE and RMSE to evaluate the performance of the SR algorithm. Through comparison with different SR models, the methods proposed in this article have significant performance improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信