(0,1)-矩阵与差异

IF 0.7 4区 数学 Q2 Mathematics
LeRoy B. Beasley
{"title":"(0,1)-矩阵与差异","authors":"LeRoy B. Beasley","doi":"10.13001/ela.2021.5033","DOIUrl":null,"url":null,"abstract":" Let $m$ and $n$ be positive integers, and let $R =(r_1, \\ldots, r_m)$ and $S =(s_1,\\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \\times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \\times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\\ell$, then the discrepancy of the transpose of $A$ is at least $\\frac{\\ell}{2}$ and at most $2\\ell$. These bounds are tight.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(0,1)-matrices and Discrepancy\",\"authors\":\"LeRoy B. Beasley\",\"doi\":\"10.13001/ela.2021.5033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Let $m$ and $n$ be positive integers, and let $R =(r_1, \\\\ldots, r_m)$ and $S =(s_1,\\\\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \\\\times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \\\\times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\\\\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\\\\ell$, then the discrepancy of the transpose of $A$ is at least $\\\\frac{\\\\ell}{2}$ and at most $2\\\\ell$. These bounds are tight.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2021.5033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$m$和$n$为正整数,设$R =(r_1, \ldots, r_m)$和$S =(s_1,\ldots, s_n)$为非负积分向量。设$A(R,S)$是所有$m \乘以n$ $(0,1)$-具有行和向量$R$和列向量$S$的矩阵的集合。设$R$和$S$是非递增的,设$F(R)$是$m \乘以n$ $(0,1)$-矩阵,其中对于每个$i$, $F(R,S)$的$i^{th}$行由$r_i$ 1和$n-r_i$ 0组成。设$A\在A(R,S)$中。A的差异$disc(A)$是$F(R)$为1而$A$为0的位置数。本文研究了A^t$与A$的可能差异。我们证明了如果$A$的差值为$\ell$,则$A$的转置差值至少为$\frac{\ell}{2}$,最多为$2\ell$。这些界限很紧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(0,1)-matrices and Discrepancy
 Let $m$ and $n$ be positive integers, and let $R =(r_1, \ldots, r_m)$ and $S =(s_1,\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\ell$, then the discrepancy of the transpose of $A$ is at least $\frac{\ell}{2}$ and at most $2\ell$. These bounds are tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信