有限中心维子群饱和的线性群

IF 0.3 Q4 MATHEMATICS, APPLIED
M. N. Semko, L. Skaskiv, O. A. Yarovaya
{"title":"有限中心维子群饱和的线性群","authors":"M. N. Semko, L. Skaskiv, O. A. Yarovaya","doi":"10.12958/ADM1317","DOIUrl":null,"url":null,"abstract":"Let \\(F\\) be a field, \\(A\\) be a vector space over \\(F\\) and \\(G\\) be a subgroup of \\(\\mathrm{GL}(F,A)\\). We say that \\(G\\) has a dense family of subgroups, having finite central dimension, if for every pair of subgroups \\(H\\), \\(K\\) of \\(G\\) such that \\(H\\leqslant K\\) and \\(H\\) is not maximal in \\(K\\) there exists a subgroup \\(L\\) of finite central dimension such that \\(H\\leqslant L\\leqslant K\\). In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear groups saturated by subgroups of finite central dimension\",\"authors\":\"M. N. Semko, L. Skaskiv, O. A. Yarovaya\",\"doi\":\"10.12958/ADM1317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(F\\\\) be a field, \\\\(A\\\\) be a vector space over \\\\(F\\\\) and \\\\(G\\\\) be a subgroup of \\\\(\\\\mathrm{GL}(F,A)\\\\). We say that \\\\(G\\\\) has a dense family of subgroups, having finite central dimension, if for every pair of subgroups \\\\(H\\\\), \\\\(K\\\\) of \\\\(G\\\\) such that \\\\(H\\\\leqslant K\\\\) and \\\\(H\\\\) is not maximal in \\\\(K\\\\) there exists a subgroup \\\\(L\\\\) of finite central dimension such that \\\\(H\\\\leqslant L\\\\leqslant K\\\\). In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/ADM1317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/ADM1317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

设\(F\)是一个字段,\(A\)是\(F\)上的一个向量空间,\(G\)是\(\mathrm{GL}(F,A)\)的一个子群。我们说\(G\)有一个中心维数有限的密集子群族,如果对于\(G\)的每一对子群\(H\), \(K\),使得\(H\leqslant K\)和\(H\)在\(K\)上不是极大的,则存在一个中心维数有限的子群\(L\),使得\(H\leqslant L\leqslant K\)。本文研究了一类中心维数有限的具有密集子群族的局部可溶线性群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear groups saturated by subgroups of finite central dimension
Let \(F\) be a field, \(A\) be a vector space over \(F\) and \(G\) be a subgroup of \(\mathrm{GL}(F,A)\). We say that \(G\) has a dense family of subgroups, having finite central dimension, if for every pair of subgroups \(H\), \(K\) of \(G\) such that \(H\leqslant K\) and \(H\) is not maximal in \(K\) there exists a subgroup \(L\) of finite central dimension such that \(H\leqslant L\leqslant K\). In this paper we study some locally soluble linear groups with a dense family of subgroups, having finite central dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信