{"title":"基于CEEMDAN和核极限学习机的短期太阳能发电预测","authors":"Ali Riza Gun, Emrah Dokur, U. Yuzgec, M. Kurban","doi":"10.5755/j02.eie.33856","DOIUrl":null,"url":null,"abstract":"The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Solar Power Forecasting Based on CEEMDAN and Kernel Extreme Learning Machine\",\"authors\":\"Ali Riza Gun, Emrah Dokur, U. Yuzgec, M. Kurban\",\"doi\":\"10.5755/j02.eie.33856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33856\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33856","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Short-Term Solar Power Forecasting Based on CEEMDAN and Kernel Extreme Learning Machine
The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.