{"title":"双模式释放二合一氯硝西泮基质含片治疗焦虑相关疾病的处方、优化和体内评价","authors":"E. Gomaa, Sami El Deeb, A. Ibrahim, M. M. Faisal","doi":"10.3390/scipharm90030043","DOIUrl":null,"url":null,"abstract":"Clonazepam (CLZ), an antipsychotic drug reported for its efficiency in managing anxiety-related disorders, is being marketed only as conventional tablets. Some patients have abstention to swallow the conventional tablets; therefore, the proposed study was aimed at developing a buccal lozenge tablet by direct compression of two types of optimized granules. Conazepam’s water solubility was first enhanced by a solid dispersion technique for a fast and better dissolution of type 1 granules, while the impact of gelling polymers was investigated on controlled-release type 2 granules. The optimized formulae met the acceptable pharmacopeial limits for tablets’ evaluation. A differential scanning calorimetry study revealed the compatibility between the drug and used excipients. All formulae gave a burst release of CLZ in the first hour of investigation, followed by a sustained release over 24 h. The formula that showed the highest prolonged in vitro release (99.0 + 0.1%), following the Higuchi diffusion model (R2 = 0.99), was then selected for further study. The formula succeeded in controlling the induced stress in a rat model with a significant impact on the behavioral tests throughout the experiment. The results were further confirmed by a pharmacokinetic study that showed a significant increase in Cmax, Tmax, and AUC (1.5, 2, and 3.9 folds), respectively, compared to oral suspension. The newly proposed delivery system has proven a better efficacy with a reduced dosing frequency.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bimodal Release Two-In-One Clonazepam Matrix Lozenge Tablets for Managing Anxiety-Related Disorders: Formulation, Optimization and In Vivo Evaluation\",\"authors\":\"E. Gomaa, Sami El Deeb, A. Ibrahim, M. M. Faisal\",\"doi\":\"10.3390/scipharm90030043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clonazepam (CLZ), an antipsychotic drug reported for its efficiency in managing anxiety-related disorders, is being marketed only as conventional tablets. Some patients have abstention to swallow the conventional tablets; therefore, the proposed study was aimed at developing a buccal lozenge tablet by direct compression of two types of optimized granules. Conazepam’s water solubility was first enhanced by a solid dispersion technique for a fast and better dissolution of type 1 granules, while the impact of gelling polymers was investigated on controlled-release type 2 granules. The optimized formulae met the acceptable pharmacopeial limits for tablets’ evaluation. A differential scanning calorimetry study revealed the compatibility between the drug and used excipients. All formulae gave a burst release of CLZ in the first hour of investigation, followed by a sustained release over 24 h. The formula that showed the highest prolonged in vitro release (99.0 + 0.1%), following the Higuchi diffusion model (R2 = 0.99), was then selected for further study. The formula succeeded in controlling the induced stress in a rat model with a significant impact on the behavioral tests throughout the experiment. The results were further confirmed by a pharmacokinetic study that showed a significant increase in Cmax, Tmax, and AUC (1.5, 2, and 3.9 folds), respectively, compared to oral suspension. The newly proposed delivery system has proven a better efficacy with a reduced dosing frequency.\",\"PeriodicalId\":21601,\"journal\":{\"name\":\"Scientia Pharmaceutica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/scipharm90030043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm90030043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bimodal Release Two-In-One Clonazepam Matrix Lozenge Tablets for Managing Anxiety-Related Disorders: Formulation, Optimization and In Vivo Evaluation
Clonazepam (CLZ), an antipsychotic drug reported for its efficiency in managing anxiety-related disorders, is being marketed only as conventional tablets. Some patients have abstention to swallow the conventional tablets; therefore, the proposed study was aimed at developing a buccal lozenge tablet by direct compression of two types of optimized granules. Conazepam’s water solubility was first enhanced by a solid dispersion technique for a fast and better dissolution of type 1 granules, while the impact of gelling polymers was investigated on controlled-release type 2 granules. The optimized formulae met the acceptable pharmacopeial limits for tablets’ evaluation. A differential scanning calorimetry study revealed the compatibility between the drug and used excipients. All formulae gave a burst release of CLZ in the first hour of investigation, followed by a sustained release over 24 h. The formula that showed the highest prolonged in vitro release (99.0 + 0.1%), following the Higuchi diffusion model (R2 = 0.99), was then selected for further study. The formula succeeded in controlling the induced stress in a rat model with a significant impact on the behavioral tests throughout the experiment. The results were further confirmed by a pharmacokinetic study that showed a significant increase in Cmax, Tmax, and AUC (1.5, 2, and 3.9 folds), respectively, compared to oral suspension. The newly proposed delivery system has proven a better efficacy with a reduced dosing frequency.