{"title":"芹菜素、山奈酚和4-羟基苯甲酸对黄嘌呤氧化酶抑制作用的体外和室内研究","authors":"Yong Sin Chin, K. Loh, Sze Ping Wee, G. H. Ong","doi":"10.17576/jsm-2023-5206-03","DOIUrl":null,"url":null,"abstract":"Xanthine oxidase (XO) is a biological enzyme that takes part in purine catabolism. It catalyses the conversion of hypoxanthine to xanthine and eventually xanthine to uric acid. The catabolism reaction increases the level of uric acid and subsequently leads to hyperuricemia. Allopurinol is a XO inhibitor that is used clinically to prevent purine catabolism. Although it is an effective XO inhibitor, it causes some side effects. Therefore, a more effective inhibitor with fewer side effects is in an urgent need. Phenolic compounds have been identified as effective XO inhibitors in many studies. In vitro and in silico study were conducted to investigate the interaction between apigenin, kaempferol and 4-hydroxybenzoic acid in XO inhibition. Apigenin was found to be the most effective XO inhibitor among the compounds tested with the best docking score of -8.2 kcal/mol as demonstrated in the molecular docking simulation which indicated its favourable interaction with XO enzyme. Additive interactions between compounds namely apigenin-kaempferol, apigenin-4-hydroxybenzoic acid and 4-hydroxybenzoic acid-kaempferol were demonstrated in both in vitro and in silico studies. The results showed that 4-hydroxybenzoic acid- apigenin (-7.4 kcal/mol) was the most stable ligands combination docked to XO. The multiple ligands docking simulation showed independent ligands bound to the XO active site at non-interfering regional location. In conclusion, the combination of these three compounds can be explored further for their additive interaction in XO inhibition, which could be beneficial in terms of the enhanced effectiveness and lower side effects when each is used at lower dose to give the same effect.","PeriodicalId":21366,"journal":{"name":"Sains Malaysiana","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Vitro and in Silico Study on the Interaction between Apigenin, Kaempferol and 4-Hydroxybenzoic Acid in Xanthine Oxidase Inhibition\",\"authors\":\"Yong Sin Chin, K. Loh, Sze Ping Wee, G. H. Ong\",\"doi\":\"10.17576/jsm-2023-5206-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Xanthine oxidase (XO) is a biological enzyme that takes part in purine catabolism. It catalyses the conversion of hypoxanthine to xanthine and eventually xanthine to uric acid. The catabolism reaction increases the level of uric acid and subsequently leads to hyperuricemia. Allopurinol is a XO inhibitor that is used clinically to prevent purine catabolism. Although it is an effective XO inhibitor, it causes some side effects. Therefore, a more effective inhibitor with fewer side effects is in an urgent need. Phenolic compounds have been identified as effective XO inhibitors in many studies. In vitro and in silico study were conducted to investigate the interaction between apigenin, kaempferol and 4-hydroxybenzoic acid in XO inhibition. Apigenin was found to be the most effective XO inhibitor among the compounds tested with the best docking score of -8.2 kcal/mol as demonstrated in the molecular docking simulation which indicated its favourable interaction with XO enzyme. Additive interactions between compounds namely apigenin-kaempferol, apigenin-4-hydroxybenzoic acid and 4-hydroxybenzoic acid-kaempferol were demonstrated in both in vitro and in silico studies. The results showed that 4-hydroxybenzoic acid- apigenin (-7.4 kcal/mol) was the most stable ligands combination docked to XO. The multiple ligands docking simulation showed independent ligands bound to the XO active site at non-interfering regional location. In conclusion, the combination of these three compounds can be explored further for their additive interaction in XO inhibition, which could be beneficial in terms of the enhanced effectiveness and lower side effects when each is used at lower dose to give the same effect.\",\"PeriodicalId\":21366,\"journal\":{\"name\":\"Sains Malaysiana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains Malaysiana\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.17576/jsm-2023-5206-03\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Malaysiana","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17576/jsm-2023-5206-03","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
In Vitro and in Silico Study on the Interaction between Apigenin, Kaempferol and 4-Hydroxybenzoic Acid in Xanthine Oxidase Inhibition
Xanthine oxidase (XO) is a biological enzyme that takes part in purine catabolism. It catalyses the conversion of hypoxanthine to xanthine and eventually xanthine to uric acid. The catabolism reaction increases the level of uric acid and subsequently leads to hyperuricemia. Allopurinol is a XO inhibitor that is used clinically to prevent purine catabolism. Although it is an effective XO inhibitor, it causes some side effects. Therefore, a more effective inhibitor with fewer side effects is in an urgent need. Phenolic compounds have been identified as effective XO inhibitors in many studies. In vitro and in silico study were conducted to investigate the interaction between apigenin, kaempferol and 4-hydroxybenzoic acid in XO inhibition. Apigenin was found to be the most effective XO inhibitor among the compounds tested with the best docking score of -8.2 kcal/mol as demonstrated in the molecular docking simulation which indicated its favourable interaction with XO enzyme. Additive interactions between compounds namely apigenin-kaempferol, apigenin-4-hydroxybenzoic acid and 4-hydroxybenzoic acid-kaempferol were demonstrated in both in vitro and in silico studies. The results showed that 4-hydroxybenzoic acid- apigenin (-7.4 kcal/mol) was the most stable ligands combination docked to XO. The multiple ligands docking simulation showed independent ligands bound to the XO active site at non-interfering regional location. In conclusion, the combination of these three compounds can be explored further for their additive interaction in XO inhibition, which could be beneficial in terms of the enhanced effectiveness and lower side effects when each is used at lower dose to give the same effect.
期刊介绍:
Sains Malaysiana is a refereed journal committed to the advancement of scholarly knowledge and research findings of the several branches of science and technology. It contains articles on Earth Sciences, Health Sciences, Life Sciences, Mathematical Sciences and Physical Sciences. The journal publishes articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. Sains Malaysiana is published by the UKM Press an its autonomous Editorial Board are drawn from the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. In addition, distinguished scholars from local and foreign universities are appointed to serve as advisory board members and referees.