HNO3-DtBuCH18C6 /正辛醇体系在环形离心萃取器中的持液量和相比(A/O

IF 1.8 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Quanduo Miao, T. Sun, Honglin Chen, Qiang Zheng, W. Duan, Jianchen Wang, Jing Chen
{"title":"HNO3-DtBuCH18C6 /正辛醇体系在环形离心萃取器中的持液量和相比(A/O","authors":"Quanduo Miao, T. Sun, Honglin Chen, Qiang Zheng, W. Duan, Jianchen Wang, Jing Chen","doi":"10.1080/07366299.2022.2052420","DOIUrl":null,"url":null,"abstract":"ABSTRACT The crown ether strontium extraction (CESE) process has been developed for the recovery or removal of Sr from acidic high-level liquid waste (HLLW) in China, where the extractant is 4’,4”(5”)-di-(tert-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) and the diluent is n-octanol. When the CESE process was operated in annular centrifugal extractors (ACEs) for demonstration by cold and hot tests, it was found that the outlet aqueous phases had organic-phase entrainment even though ACEs operated at a low rotor speed. For the successful operation of the CESE process in ACEs, effects of the operating and geometrical parameters on the liquid hold-up volume and phase ratio (aqueous phase/organic phase, A/O) of the HNO3 –DtBuCH18C6/n-octanol system in a ϕ20 ACE were systematically investigated to find the cause of the above-mentioned hydrodynamic performance problem of the CESE process using the liquid-fast-separation method. It is shown that the operating and geometrical parameters have effects on the liquid hold-up volume and phase ratio (A/O). Moreover, the phase ratio (A/O) in the separation zone of the rotor is less than 1.5 under most of the present experimental conditions, which shows organic-phase entrainment may easily occur in the outlet aqueous phase. The cause can be that the density difference of two phases is small, viscosity of the organic phase is large, and interfacial tension of the extraction system is low.","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":"40 1","pages":"777 - 799"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Liquid Hold-up Volume and Phase Ratio (A/O) of HNO3–DtBuCH18C6/n-Octanol System in an Annular Centrifugal Extractor\",\"authors\":\"Quanduo Miao, T. Sun, Honglin Chen, Qiang Zheng, W. Duan, Jianchen Wang, Jing Chen\",\"doi\":\"10.1080/07366299.2022.2052420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The crown ether strontium extraction (CESE) process has been developed for the recovery or removal of Sr from acidic high-level liquid waste (HLLW) in China, where the extractant is 4’,4”(5”)-di-(tert-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) and the diluent is n-octanol. When the CESE process was operated in annular centrifugal extractors (ACEs) for demonstration by cold and hot tests, it was found that the outlet aqueous phases had organic-phase entrainment even though ACEs operated at a low rotor speed. For the successful operation of the CESE process in ACEs, effects of the operating and geometrical parameters on the liquid hold-up volume and phase ratio (aqueous phase/organic phase, A/O) of the HNO3 –DtBuCH18C6/n-octanol system in a ϕ20 ACE were systematically investigated to find the cause of the above-mentioned hydrodynamic performance problem of the CESE process using the liquid-fast-separation method. It is shown that the operating and geometrical parameters have effects on the liquid hold-up volume and phase ratio (A/O). Moreover, the phase ratio (A/O) in the separation zone of the rotor is less than 1.5 under most of the present experimental conditions, which shows organic-phase entrainment may easily occur in the outlet aqueous phase. The cause can be that the density difference of two phases is small, viscosity of the organic phase is large, and interfacial tension of the extraction system is low.\",\"PeriodicalId\":22002,\"journal\":{\"name\":\"Solvent Extraction and Ion Exchange\",\"volume\":\"40 1\",\"pages\":\"777 - 799\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solvent Extraction and Ion Exchange\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/07366299.2022.2052420\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2022.2052420","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:采用冠醚萃取(CESE)工艺从酸性高放废液(HLLW)中回收或去除锶,萃取剂为4′,4′(5′)-二-(叔丁基二环己酸)-18-冠-6 (DtBuCH18C6),稀释剂为正辛醇。在环形离心萃取器(ACEs)中进行冷、热试验验证CESE过程时,发现即使ACEs在低转速下运行,出口水相也存在有机相夹带。为了使CESE工艺在ACE中成功运行,系统研究了操作参数和几何参数对HNO3 -DtBuCH18C6 /正辛醇体系的液含率、体积和相比(水相/有机相,A/O)的影响,采用液相快速分离方法寻找上述CESE工艺流体动力性能问题的原因。结果表明,操作参数和几何参数对液持率、体积和相比(A/O)均有影响。此外,在目前大多数实验条件下,转子分离区的相比(A/O)小于1.5,这表明出口水相容易发生有机相夹带。其原因可能是两相密度差小,有机相粘度大,萃取体系界面张力低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liquid Hold-up Volume and Phase Ratio (A/O) of HNO3–DtBuCH18C6/n-Octanol System in an Annular Centrifugal Extractor
ABSTRACT The crown ether strontium extraction (CESE) process has been developed for the recovery or removal of Sr from acidic high-level liquid waste (HLLW) in China, where the extractant is 4’,4”(5”)-di-(tert-butyldicyclohexano)-18-crown-6 (DtBuCH18C6) and the diluent is n-octanol. When the CESE process was operated in annular centrifugal extractors (ACEs) for demonstration by cold and hot tests, it was found that the outlet aqueous phases had organic-phase entrainment even though ACEs operated at a low rotor speed. For the successful operation of the CESE process in ACEs, effects of the operating and geometrical parameters on the liquid hold-up volume and phase ratio (aqueous phase/organic phase, A/O) of the HNO3 –DtBuCH18C6/n-octanol system in a ϕ20 ACE were systematically investigated to find the cause of the above-mentioned hydrodynamic performance problem of the CESE process using the liquid-fast-separation method. It is shown that the operating and geometrical parameters have effects on the liquid hold-up volume and phase ratio (A/O). Moreover, the phase ratio (A/O) in the separation zone of the rotor is less than 1.5 under most of the present experimental conditions, which shows organic-phase entrainment may easily occur in the outlet aqueous phase. The cause can be that the density difference of two phases is small, viscosity of the organic phase is large, and interfacial tension of the extraction system is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.00%
发文量
15
审稿时长
8.4 months
期刊介绍: Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信