{"title":"关于八阶平面$\\mathbb的同态幂零性{O}P^2$","authors":"Marek Golasi´nski","doi":"10.7146/math.scand.a-128541","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{O}P^2_{(p)}$ be the $p$-localization of the Cayley projective plane $\\mathbb{O}P^2$ for a prime $p$ or $p=0$. We show that the homotopy nilpotency class $\\textrm{nil} \\Omega(\\mathbb{O}P^2_{(p)})<\\infty $ for $p>2$ and $\\textrm{nil} \\Omega (\\mathbb{O}P^2_{(p)})=1$ for $p>5$ or $p=0$. The homotopy nilpotency of remaining Rosenfeld projective planes are discussed as well.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On homotopy nilpotency of the octonian plane $\\\\mathbb{O}P^2$\",\"authors\":\"Marek Golasi´nski\",\"doi\":\"10.7146/math.scand.a-128541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{O}P^2_{(p)}$ be the $p$-localization of the Cayley projective plane $\\\\mathbb{O}P^2$ for a prime $p$ or $p=0$. We show that the homotopy nilpotency class $\\\\textrm{nil} \\\\Omega(\\\\mathbb{O}P^2_{(p)})<\\\\infty $ for $p>2$ and $\\\\textrm{nil} \\\\Omega (\\\\mathbb{O}P^2_{(p)})=1$ for $p>5$ or $p=0$. The homotopy nilpotency of remaining Rosenfeld projective planes are discussed as well.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-128541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-128541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On homotopy nilpotency of the octonian plane $\mathbb{O}P^2$
Let $\mathbb{O}P^2_{(p)}$ be the $p$-localization of the Cayley projective plane $\mathbb{O}P^2$ for a prime $p$ or $p=0$. We show that the homotopy nilpotency class $\textrm{nil} \Omega(\mathbb{O}P^2_{(p)})<\infty $ for $p>2$ and $\textrm{nil} \Omega (\mathbb{O}P^2_{(p)})=1$ for $p>5$ or $p=0$. The homotopy nilpotency of remaining Rosenfeld projective planes are discussed as well.