通过爆炸增加含水晶体岩石的裂缝来提高其吸水率

IF 0.5 Q4 GEOCHEMISTRY & GEOPHYSICS
V. Shestopalov, L. Petrenko, I. M. Romanyuk
{"title":"通过爆炸增加含水晶体岩石的裂缝来提高其吸水率","authors":"V. Shestopalov, L. Petrenko, I. M. Romanyuk","doi":"10.24028/gzh.v43i5.244039","DOIUrl":null,"url":null,"abstract":"Global warming, which has been observed in the world and Ukraine in particular in recent decades, may lead to a decrease in surface and groundwater. In addition, the high level of groundwater pollution and the policy of water purification is a matter of concern. Thus, the question of finding additional and alternative sources of drinking water today is highly urgent. A significant percentage of prospecting works of the last century was devoted to discovering the groundwater fields in fractured crystalline rocks of the Ukrainian Shield. As a rule, the productivity of wells of these formations did not have high flow rates, so even now, mostly the aquifers in sedimentary deposits have been exploited.\nThe low productivity of most wells in water-bearing fractured rocks is associated with the unknown degree of fracturing of the crystalline massif: it is difficult to determine the pathways of groundwater inflow into the fracture system and, accordingly, it is not easy to justify the exploitable groundwater reserves. In this paper, using the groundwater flow model of the Zhashkiv groundwater deposit, it is considered an increase of the productivity of water intake wells in the water-bearing crystalline rocks due to the increasing degree of their fracturing by an explosion. Thus, in hydrogeology, this technique is known when trying to increase the permeability in the near-borehole space, but as a method of artificial recharge of aquiferous crystalline rocks is used very rarely. The paper also examines typical water intakes conditions in fractured crystalline water-bearing rocks, which can be recommended for increasing their productivity by the blasting method. The results indicate that an artificial increase in fracturing degree can have a significant effect on increasing the productivity of water intakes. The basic methods of using explosives, as an example of an artificial increase in fracturing degree, in solving hydrogeological problems and the mechanisms of fractures’ formation during the action of blasting are considered.","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the productivity of water in takein water-containing crystalline rocks by increasing their fracture by an explosion\",\"authors\":\"V. Shestopalov, L. Petrenko, I. M. Romanyuk\",\"doi\":\"10.24028/gzh.v43i5.244039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global warming, which has been observed in the world and Ukraine in particular in recent decades, may lead to a decrease in surface and groundwater. In addition, the high level of groundwater pollution and the policy of water purification is a matter of concern. Thus, the question of finding additional and alternative sources of drinking water today is highly urgent. A significant percentage of prospecting works of the last century was devoted to discovering the groundwater fields in fractured crystalline rocks of the Ukrainian Shield. As a rule, the productivity of wells of these formations did not have high flow rates, so even now, mostly the aquifers in sedimentary deposits have been exploited.\\nThe low productivity of most wells in water-bearing fractured rocks is associated with the unknown degree of fracturing of the crystalline massif: it is difficult to determine the pathways of groundwater inflow into the fracture system and, accordingly, it is not easy to justify the exploitable groundwater reserves. In this paper, using the groundwater flow model of the Zhashkiv groundwater deposit, it is considered an increase of the productivity of water intake wells in the water-bearing crystalline rocks due to the increasing degree of their fracturing by an explosion. Thus, in hydrogeology, this technique is known when trying to increase the permeability in the near-borehole space, but as a method of artificial recharge of aquiferous crystalline rocks is used very rarely. The paper also examines typical water intakes conditions in fractured crystalline water-bearing rocks, which can be recommended for increasing their productivity by the blasting method. The results indicate that an artificial increase in fracturing degree can have a significant effect on increasing the productivity of water intakes. The basic methods of using explosives, as an example of an artificial increase in fracturing degree, in solving hydrogeological problems and the mechanisms of fractures’ formation during the action of blasting are considered.\",\"PeriodicalId\":54141,\"journal\":{\"name\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24028/gzh.v43i5.244039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gzh.v43i5.244039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,世界各地,特别是乌克兰都观察到了全球变暖,这可能会导致地表水和地下水减少。此外,高水平的地下水污染和水净化政策也是一个令人关切的问题。因此,寻找额外和替代饮用水源的问题在今天是非常紧迫的。上个世纪的勘探工作中,很大一部分致力于在乌克兰地盾的破碎结晶岩中发现地下水。通常,这些地层的井的生产率并不高,因此即使是现在,沉积矿床中的大部分含水层也已被开采。在含水裂隙岩石中,大多数井的生产率较低,这与结晶岩体的断裂程度未知有关:很难确定地下水流入裂隙系统的途径,因此,也不容易证明地下水的可开采储量。本文利用Zhashkiv地下水矿床的地下水流动模型,认为含水晶体岩中的取水井由于爆炸破裂程度的增加而提高了生产力。因此,在水文地质中,当试图增加近钻孔空间的渗透率时,这项技术是已知的,但作为一种人工补给含水结晶岩的方法,很少使用。文中还考察了裂隙结晶含水岩石的典型取水口条件,建议采用爆破方法提高其生产率。结果表明,人为提高压裂程度对提高取水口生产率有显著影响。以人工提高压裂程度为例,介绍了利用炸药解决水文地质问题的基本方法,以及在爆破过程中裂缝形成的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing the productivity of water in takein water-containing crystalline rocks by increasing their fracture by an explosion
Global warming, which has been observed in the world and Ukraine in particular in recent decades, may lead to a decrease in surface and groundwater. In addition, the high level of groundwater pollution and the policy of water purification is a matter of concern. Thus, the question of finding additional and alternative sources of drinking water today is highly urgent. A significant percentage of prospecting works of the last century was devoted to discovering the groundwater fields in fractured crystalline rocks of the Ukrainian Shield. As a rule, the productivity of wells of these formations did not have high flow rates, so even now, mostly the aquifers in sedimentary deposits have been exploited. The low productivity of most wells in water-bearing fractured rocks is associated with the unknown degree of fracturing of the crystalline massif: it is difficult to determine the pathways of groundwater inflow into the fracture system and, accordingly, it is not easy to justify the exploitable groundwater reserves. In this paper, using the groundwater flow model of the Zhashkiv groundwater deposit, it is considered an increase of the productivity of water intake wells in the water-bearing crystalline rocks due to the increasing degree of their fracturing by an explosion. Thus, in hydrogeology, this technique is known when trying to increase the permeability in the near-borehole space, but as a method of artificial recharge of aquiferous crystalline rocks is used very rarely. The paper also examines typical water intakes conditions in fractured crystalline water-bearing rocks, which can be recommended for increasing their productivity by the blasting method. The results indicate that an artificial increase in fracturing degree can have a significant effect on increasing the productivity of water intakes. The basic methods of using explosives, as an example of an artificial increase in fracturing degree, in solving hydrogeological problems and the mechanisms of fractures’ formation during the action of blasting are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofizicheskiy Zhurnal-Geophysical Journal
Geofizicheskiy Zhurnal-Geophysical Journal GEOCHEMISTRY & GEOPHYSICS-
自引率
60.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信