含时问题的约化基方法

IF 16.3 1区 数学 Q1 MATHEMATICS
J. Hesthaven, C. Pagliantini, G. Rozza
{"title":"含时问题的约化基方法","authors":"J. Hesthaven, C. Pagliantini, G. Rozza","doi":"10.1017/S0962492922000058","DOIUrl":null,"url":null,"abstract":"Numerical simulation of parametrized differential equations is of crucial importance in the study of real-world phenomena in applied science and engineering. Computational methods for real-time and many-query simulation of such problems often require prohibitively high computational costs to achieve sufficiently accurate numerical solutions. During the last few decades, model order reduction has proved successful in providing low-complexity high-fidelity surrogate models that allow rapid and accurate simulations under parameter variation, thus enabling the numerical simulation of increasingly complex problems. However, many challenges remain to secure the robustness and efficiency needed for the numerical simulation of nonlinear time-dependent problems. The purpose of this article is to survey the state of the art of reduced basis methods for time-dependent problems and draw together recent advances in three main directions. First, we discuss structure-preserving reduced order models designed to retain key physical properties of the continuous problem. Second, we survey localized and adaptive methods based on nonlinear approximations of the solution space. Finally, we consider data-driven techniques based on non-intrusive reduced order models in which an approximation of the map between parameter space and coefficients of the reduced basis is learned. Within each class of methods, we describe different approaches and provide a comparative discussion that lends insights to advantages, disadvantages and potential open questions.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"31 1","pages":"265 - 345"},"PeriodicalIF":16.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Reduced basis methods for time-dependent problems\",\"authors\":\"J. Hesthaven, C. Pagliantini, G. Rozza\",\"doi\":\"10.1017/S0962492922000058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulation of parametrized differential equations is of crucial importance in the study of real-world phenomena in applied science and engineering. Computational methods for real-time and many-query simulation of such problems often require prohibitively high computational costs to achieve sufficiently accurate numerical solutions. During the last few decades, model order reduction has proved successful in providing low-complexity high-fidelity surrogate models that allow rapid and accurate simulations under parameter variation, thus enabling the numerical simulation of increasingly complex problems. However, many challenges remain to secure the robustness and efficiency needed for the numerical simulation of nonlinear time-dependent problems. The purpose of this article is to survey the state of the art of reduced basis methods for time-dependent problems and draw together recent advances in three main directions. First, we discuss structure-preserving reduced order models designed to retain key physical properties of the continuous problem. Second, we survey localized and adaptive methods based on nonlinear approximations of the solution space. Finally, we consider data-driven techniques based on non-intrusive reduced order models in which an approximation of the map between parameter space and coefficients of the reduced basis is learned. Within each class of methods, we describe different approaches and provide a comparative discussion that lends insights to advantages, disadvantages and potential open questions.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"31 1\",\"pages\":\"265 - 345\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492922000058\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492922000058","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

参数化微分方程的数值模拟在应用科学和工程中对现实世界现象的研究具有至关重要的意义。这类问题的实时和多查询模拟的计算方法通常需要过高的计算成本才能获得足够精确的数值解。在过去的几十年里,模型降阶已经被证明成功地提供了低复杂度、高保真度的替代模型,这些模型允许在参数变化下进行快速、准确的模拟,从而能够对日益复杂的问题进行数值模拟。然而,为了保证非线性时变问题数值模拟所需的鲁棒性和效率,仍然存在许多挑战。本文的目的是研究时间相关问题的简化基方法的现状,并总结三个主要方向的最新进展。首先,我们讨论了用于保留连续问题的关键物理性质的保结构降阶模型。其次,我们研究了基于解空间非线性逼近的局部化和自适应方法。最后,我们考虑了基于非侵入性降阶模型的数据驱动技术,其中学习了参数空间和降阶基系数之间映射的近似值。在每一类方法中,我们描述了不同的方法,并提供了一个比较讨论,以提供对优点,缺点和潜在开放问题的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced basis methods for time-dependent problems
Numerical simulation of parametrized differential equations is of crucial importance in the study of real-world phenomena in applied science and engineering. Computational methods for real-time and many-query simulation of such problems often require prohibitively high computational costs to achieve sufficiently accurate numerical solutions. During the last few decades, model order reduction has proved successful in providing low-complexity high-fidelity surrogate models that allow rapid and accurate simulations under parameter variation, thus enabling the numerical simulation of increasingly complex problems. However, many challenges remain to secure the robustness and efficiency needed for the numerical simulation of nonlinear time-dependent problems. The purpose of this article is to survey the state of the art of reduced basis methods for time-dependent problems and draw together recent advances in three main directions. First, we discuss structure-preserving reduced order models designed to retain key physical properties of the continuous problem. Second, we survey localized and adaptive methods based on nonlinear approximations of the solution space. Finally, we consider data-driven techniques based on non-intrusive reduced order models in which an approximation of the map between parameter space and coefficients of the reduced basis is learned. Within each class of methods, we describe different approaches and provide a comparative discussion that lends insights to advantages, disadvantages and potential open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信